On testing the use of argumentation in deliberation dialogues

Eric M. Kok John-Jules Ch. Meyer Henry Prakken Gerard A. W. Vreeswijk

Utrecht University

March 24, 2011

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Argumentation logics

The deliberation dialogue Efficiency and

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

- Argumentation logics
- Argumentation-based dialogues

Introduction

The deliberation dialogue Efficiency and

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

- Argumentation logics
- Argumentation-based dialogues
 - Persuasion
 - Negotiation
 - Deliberation

The deliberation dialogue Efficiency and

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

. . .

- Argumentation logics
- Argumentation-based dialogues
 - Persuasion
 - Negotiation
 - Deliberation
 - Decision making
 - Multi-agent
 - · Partially cooperative

Introduction

The deliberation dialogue Efficiency and

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

. . .

• a: We should go to the local pizzeria.

Introduction

The deliberation dialogue Efficiency and

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

- a: We should go to the local pizzeria.
- b: Why should we go there? I propose to the nearby bistro instead.

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

- a: We should go to the local pizzeria.
- b: Why should we go there? I propose to the nearby bistro instead.
- a: Well, the pizzeria serves tasty pizza's. And we can drink wine as well. Why go to the bistro?

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

- *a*: We should go to the local pizzeria.
- b: Why should we go there? I propose to the nearby bistro instead.
- a: Well, the pizzeria serves tasty pizza's. And we can drink wine as well. Why go to the bistro?
- b: The toppings at the pizzeria are very dull, while the bistro has the best steaks in town.

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

- a: We should go to the local pizzeria.
- b: Why should we go there? I propose to the nearby bistro instead.
- a: Well, the pizzeria serves tasty pizza's. And we can drink wine as well. Why go to the bistro?
- b: The toppings at the pizzeria are very dull, while the bistro has the best steaks in town.

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

<u>►</u> ...

- Argumentation helps to:
 - Improve efficiency
 - Improve effectiveness

Introduction

The deliberation dialogue Efficiency and

effectiveness Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

- Argumentation helps to:
 - Improve efficiency
 - Improve effectiveness
- Assumptions...

Introduction

The deliberation dialogue Efficiency and

effectiveness Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

- Argumentation helps to:
 - Improve efficiency
 - Improve effectiveness
- Assumptions...
- Based on:
 - Improved internal reasoning
 - Improved dialogues

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

- Argumentation helps to:
 - Improve efficiency
 - Improve effectiveness
- Assumptions...
- Based on:
 - Improved internal reasoning
 - Improved dialogues
- What metrics to use?

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Existing work

- Rahwan et al. (2007)
 - Negotiation with explicit asking for goals
 - Reach wider variety of goals
 - No (counter-)arguments

Introduction

The deliberation dialogue Efficiency and

effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Existing work

- Rahwan et al. (2007)
 - Negotiation with explicit asking for goals
 - Reach wider variety of goals
 - No (counter-)arguments
- Karunatillake et al. (2009)
 - Negotiation in agent society
 - Providing reasons increases efficiency
 - Concealing information lowers effectiveness
 - No (counter-)arguments

Introduction

The deliberation dialogue

Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Dialogue model

- \blacktriangleright Set of agents ${\cal A}$
- Topic language L_t
 - Action-options $L_o \subseteq L_t$
 - Beliefs $L_b \subseteq L_t$
 - Goals $L_g \subseteq L_t$
- Communication language L_c
- A dialogue d
 - A mutual goal $g_d \in L_g$
 - A protocol ${\cal P}$
 - Dialogue proposals $Q_d = \{q \in L_o | \textit{propose}(q)) \in d\}$
 - Dialogue outcome $\mathcal{O}(d) = \operatorname{random}(\{o | o \in Q_d \text{ where } o \text{ is } in \})$

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model

Agent model Experimental setup

Experiments

Communication language

speech act	attacks	surrenders
propose(do(q))	why-propose(do(q))	
why-propose(do(q))	$argue(A \Rightarrow g_d)$	
	where $ ext{do}(q) \in A$	
skip		
$inform(A \Rightarrow p)$		
$argue(A \Rightarrow p)$	$argue(B \Rightarrow p')$ where	concede(p)
	$B \Rightarrow p'$ defeats $A \Rightarrow p$	
	$why(p')$ where $p' \in A$	$concede(p')$ where $p' \in A$
why(p)	$argue(A \Rightarrow p)$	retract(p)
concede(p)		
retract(p)		

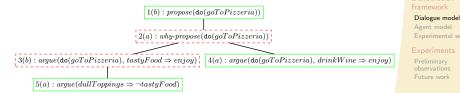
Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model

Agent model Experimental setup


Experiments

Preliminary observations Future work

Dialogue example

$\mathcal{A} = \{\textit{a},\textit{b},\textit{c},\textit{d}\}$ with dialogue goal <code>enjoy</code>

Universiteit Utrecht

The deliberation

► A set of belief B_{d,a}

The deliberation

dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model

Experiments

Preliminary observations Future work

- ► A set of belief B_{d,a}
- ► A set of action-options O_{d,a}

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Agent model

Experiments

Preliminary observations Future work

- A set of belief B_{d,a}
- ► A set of action-options O_{d,a}
- ► A set of goals G_{d,a}

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model

Experiments

Preliminary observations Future work

- A set of belief B_{d,a}
- ► A set of action-options O_{d,a}
- A set of goals G_{d,a}
- Strategy in a dialogue *d*:
 - Move evaluation
 - Option analysis
 - Move generation

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model

Experimental setup

Experiments

Simple move evaluation

Simple move evaluation:

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Agent model

Experiments

Preliminary observations Future work

Simple move evaluation

Simple move evaluation:

• $O_{d',a} = O_{d,a} \cup B^m$ if m is a propose move

•
$$G_{d',a} = G_{d,a}$$

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model

Agent model Experimental setup

Experiments

Preliminary observations Future work

Option analysis

From goal to action-option utility:

Assign an option attitude ({build, destroy, indifferent}):

Similar to Amgoud and Maudet (2002)

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model

Experimental setup

Experiments

Preliminary observations Future work

Option analysis

From goal to action-option utility:

- Every $g \in G_{d,a}$ has a utility $\mathcal{V}_{d,a}^g$
- Promoted goals F^o_{d,a} for each o ∈ O_{d,a} that has a defensible argument in B_{d,a} ∪ {o}

• Option utility
$$\mathcal{U}_{d,a}^o = \sum_{g \in F_{d,a}^o} \mathcal{V}_{d,z}^g$$

Assign an option attitude ({build, destroy, indifferent}):

Similar to Amgoud and Maudet (2002)

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model

Experimental setup

Experiments

Option analysis

From goal to action-option utility:

- Every $g \in G_{d,a}$ has a utility $\mathcal{V}_{d,a}^g$
- Promoted goals F^o_{d,a} for each o ∈ O_{d,a} that has a defensible argument in B_{d,a} ∪ {o}

• Option utility
$$\mathcal{U}_{d,a}^o = \sum_{g \in F_{d,a}^o} \mathcal{V}_{d,z}^g$$

Assign an option attitude ({build, destroy, indifferent}):

Similar to Amgoud and Maudet (2002)

•
$$H^o_{d,a}$$
 = build if $o = \arg \max_{o \in O_{d,a}} \mathcal{U}^o_{d,a}$ where $\mathcal{U}^o_{d,a} > 0$

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model

Experimental setup

Experiments

Move generation

Input: dialogue d, agent a 1: for all $o \in O_{d,a}$ do 2: if $o \notin Q_d$ and $H_{d_a}^q = build$ then 3: return propose(q)4: else if $o \in Q_d$ and $H^q_{d,a} = build$ or $H^q_{d,a} = destroy$ then 5: {Loop through all moves that are 'actively attacking' the proposal } 6: for all $m \in getActiveAttackers(\emptyset, propose(g), \top, d)$ do 7: if m = propose(o), m is in and whv-propose(o) $\not\in d$ then 8: return why-propose(o) 9: {For argue moves, first try to give a counter-argument before questioning} 10: else if $m = argue(A \Rightarrow p)$, B-defensible argue move $B \Rightarrow p'$ defeats $A \Rightarrow p$ and $argue(B \Rightarrow p') \not\in d$ then 11: return $argue(B \Rightarrow p')$ 12: else if $m = argue(A \Rightarrow p)$, $p' \in A$ and $why(p') \notin d$ then 13: return why(p')14: else if m = whv - propose(o) and B-defensible argue move $argue(A \Rightarrow g_d) \not\in d$ where $do(o) \in A$ then 15: return $argue(A \Rightarrow g_d)$ 16: else if m = why(p) and B-defensible argue move $argue(A \Rightarrow p) \notin d$ then 17: return $argue(A \Rightarrow p)$ 18: 19: 20: end if end for end if 21. end for

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model

Experimental setup

Experiments

Preliminary observations Future work

Move generation

Input: attackers set att, move m, if parent is attacker par, dialogue d 1: if m = propose(q) or m is an attacking move then 23456789 if m is in then {Include moves that are in} $att = att \cup \{m\}$ for all $m' \in d$ where target(m') = m do getActiveAttackers(att, m', \top, d) end for end if else if par then 10: {If this move's target was *in*, also look though its attackers} 11: for all $m' \in d$ where target(m') = m do 12: getActiveAttackers(att, m', \perp, d) 13: 14: end for end if 15: return att

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Agent model

Experimental setup

Experiments

Preliminary observations Future work

Scenario generation

Knowledge pool *I*:

Scenario for empty dialogue $d = \emptyset$:

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Scenario generation

Knowledge pool *I*:

- Set of n_O action-options O_I
- Set of n_G goals G_I $(g_d \in G_I)$
- Set of n_C facts C_l (n_N % negated beliefs)
- Set of n_{CR} fact rules CR_l of the form $f_i \rightarrow f_j$
- Set of n_{GR} goal rules GR_i of the form $f_i \rightarrow g_j$
- Set of n_{OR} option rules OR_I of the form $o_i \rightarrow f_j$

Scenario for empty dialogue $d = \emptyset$:

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model

Experimental setup

Experiments

Scenario generation

Knowledge pool *I*:

- Set of n_O action-options O_I
- Set of n_G goals G_I $(g_d \in G_I)$
- Set of n_C facts C_l (n_N % negated beliefs)
- Set of n_{CR} fact rules CR_l of the form $f_i \rightarrow f_j$
- Set of n_{GR} goal rules GR_I of the form $f_i \rightarrow g_j$
- Set of n_{OR} option rules OR_i of the form $o_i \rightarrow f_j$

Scenario for empty dialogue $d = \emptyset$:

- Mutual goal g_d
- Each agent $a \in A$ is randomly assigned:
 - A set of m_C facts, m_{CR} fact rules, m_{GR} goal rules and m_{OR} option rules $B_{d,a}$
 - A set of m_O options O_{d,a}
 - A set of m_G goals $G_{d,a}$, each with utility $\mathcal{V}_{d,a}^g$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�??

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

_ . .

Preliminary observations

Example scenario

$$\frac{\text{Knowledge pool } I}{B_{I} = \{f_{0}, f_{1}, f_{2}, f_{3}, f_{4}, \neg f_{0}, \neg f_{1}, \neg f_{2}, \neg f_{3}, \neg f_{4}, f_{4} \leftarrow \neg f_{3}, f_{1} \leftarrow f_{2}, f_{1} \leftarrow f_{2}, f_{1} \leftarrow f_{2}, f_{0} \leftarrow \neg f_{3}, \neg f_{2} \leftarrow f_{1}, \dots, f_{0} \leftarrow do(o_{1}), f_{0} \leftarrow do(o_{2}), \dots, g_{1} \leftarrow \neg f_{2}, g_{2} \leftarrow \neg f_{4}, \dots, O_{I} = \{do(o_{0}), do(o_{1}), do(o_{2})\} \\ G_{I} = \{g_{d}, g_{0}, g_{1}\}$$

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Example scenario

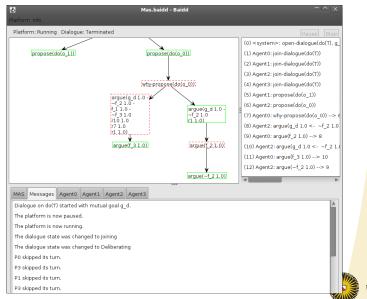
Agent a's internal model

$$\begin{split} \overline{B}_{\emptyset,a} &= \{f_1, f_2, f_3, f_4, \neg f_2, \\ f_0 &\leftarrow \neg f_3, f_1 \leftarrow f_2, \neg f_2 \leftarrow f_1, f_0 \leftarrow \neg f_3, f_4 \leftarrow \neg f_3, \\ g_1 &\leftarrow \neg f_2, g_d \leftarrow \neg f_4, \\ f_0 &\leftarrow do(o_1), \neg f_4 \leftarrow do(o_1), \neg f_4 \leftarrow do(o_2), \\ O_{\emptyset,a} &= \{do(o_0), do(o_1)\} \\ G_{\emptyset,a} &= \{g_d, g_0\} \\ \mathcal{V}_{\emptyset,a}^{g_d} &= 5 \text{ and } \mathcal{V}_{\emptyset,a}^{g_0} = 5 \end{split}$$

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework


Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Example scenario

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Metrics

Efficiency

•
$$\epsilon_{move}(d) = |d|$$

Relevance

•
$$\epsilon_{\text{relevance}}(d) = \frac{|\{m|m \in d \text{ where } m \text{ was relevant }\}|}{|d|}$$

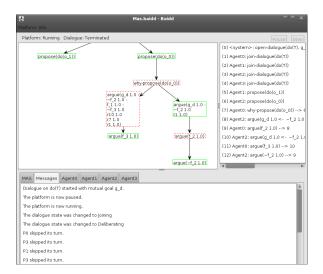
Information concealment

Effectiveness

•
$$\epsilon_{\text{total}}(d,q) = \sum_{a \in A} \mathcal{U}_{d,a}^q$$

Universiteit Utrecht

framework Dialogue model Agent model


The deliberation

Experimental setup

Experiments

Metrics example

・ロト ・部ト ・ヨト ・ヨト

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

 $\epsilon_{\texttt{move}}(d) = 8$ $\epsilon_{\texttt{relevance}}(d) = 1$ $\epsilon_{\texttt{total}}(d, \texttt{do}(o_0)) = 10$

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Running experiments

Generating and playing many scenarios

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Running experiments

- Generating and playing many scenarios
- Applying metrics

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

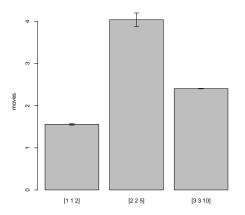
Running experiments

- Generating and playing many scenarios
- Applying metrics
- Comparing results (ANOVA)

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

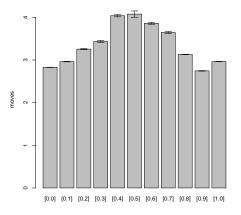

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations Future work

Partial versus complete knowledge

emove comparison


Universiteit Utrecht

The deliberation

Agent model

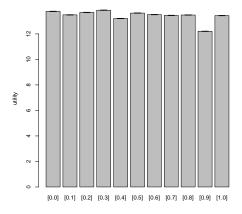
Preliminary observations

Percentage negated facts

emove comparison

Universiteit Utrecht

Introduction


The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

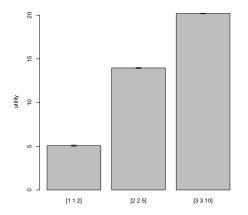
Experiments

Percentage negated facts

etotal comparison

Universiteit Utrecht

Introduction


The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Partial versus complete knowledge

etotal comparison

Universiteit Utrecht

The deliberation

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Future experiments

- Varying protocol rules
 - Outcome selection function

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observation

Future work

Future experiments

- Varying protocol rules
 - Outcome selection function
- Varying strategies
 - Belief revision
 - Move generation
 - Arguing versus non-arguing

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observation

Future work

References

- I. Rahwan, P. Pasquier, L. Sonenberg, and F. P. M. Dignum. On the benefits of exploiting underlying goals in argument-based negotiation. In A. Cohn, editor, Proceedings of 22nd Conference on Artificial Intelligence (AAAI), pages 116121, Vancouver, Canada, 2007. AAAI Press.
- N. C. Karunatillake, N. R. Jennings, I. Rahwan, and P. McBurney. Dialogue games that agents play within a society. Artificial Intelligence, 173(9-10):935981, 2009.
- L. Amgoud and N. Maudet. Strategical considerations for argumentative agents (preliminary report). In Proceedings of the 9th International Workshop on Non-Monotonic Reasoning, pages 399407, Toulouse, France, 2002.
- Web: http://people.cs.uu.nl/erickok/
- E-mail: erickok@cs.uu.nl

Introduction

The deliberation dialogue Efficiency and effectiveness

Deliberation framework

Dialogue model Agent model Experimental setup

Experiments

Preliminary observations

