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Chapter 1

Introduction

With ubiquitous internet access, recommender engines, localization and social
networks, it seems that settling on a restaurant to eat with friends should be
quick and straightforward. In reality though, at least in my experience, it takes
a discussion on food styles, atmosphere, prices, the variety of beers they serve
or even the source of the meat to settle on a single place. As it turns out,
even a wealth of information and clear personal preferences do not make these
ever-present collaborative tasks trivial. Instead, we use the power of persuasion,
inquiry, means-end reasoning and other forms of argument to come to a decision.
It should therefore not come as a surprise that argumentation is a topic that
has been studied in many fields of science, from philosophy and linguistics to
law and computer science.

It is not only for scientific curiosity, though, that argumentation has received
such wide interest, in its many forms and through many alternative views.
Rather, argumentation has potential to improve the expressibility of scientific
models and to better the applications built on these models. It is in the field
of artificial intelligence that so many potential uses of argumentation come
together, as the software systems in AI are frequently modelled after human
ways already, such as communication, reasoning and planning. This begs the
question how argumentation can help in the field of artificial intelligence, or
rather, what the benefits are of using argumentation in models for AI.



1. Introduction

1.1 Argumentation in AI

The study of argumentation has roots in a wide array of scientific fields and
can be traced back to the theory of rhetoric arguments of Aristotle. In the last
century, the theory of argumentation was developed in various fields, such as
law, philosophy, linguistics and, eventually, artificial intelligence. Interestingly,
independent of the area of scientific interest, argumentation is used in several
very distinct ways. First, argumentation can relate to a style of dialogue in
which participants try to find justification for a claim or alternative. Second,
argumentation concerns the evaluation of claims, based on some premises, to
derive justified conclusions. Arguably there is a third distinct function of ar-
gumentation, which is the reasoning process of an (artificial) agent through
construction and validation of claims to infer what to do.

Within artificial intelligence the most interest has been on the development
of logics for argumentation, as a non-monotonic way of deriving justified con-
clusions from a body of knowledge (Pollock, 1987). Using world beliefs and
assumptions as premises and combining them with inference rules, it is pos-
sible to construct arguments that can be compared by considering how they
attack and defeat each other. Most modern argumentation logics are (partial)
implementations or extensions of the abstract framework for argumentation-
based inference of Dung (1995). Chapter 2 will introduce the concepts behind
argumentation logics and how they can be used in AI.

One of the most influential areas of artificial intelligence is that of agent
technology, where software systems are designed as autonomous and pro-active
entities. Commonly, agents are modelled with a BDI architecture, where the
core of an agent consists of a reasoning mechanism that derives from beliefs
and goals a plan to act in the world (Rao and Georgeff, 1991). Historically the
reasoning is performed using logics from classic first-order logic to temporal and
modal logics. Non-monotonic logics, such as argumentation logics, have not as
much been applied to agent reasoning.

Argumentation as a type of dialogue has found a lot of attention in the
field of multi-agent systems. As communication is such a vital part of multi-
agent design, many models have been proposed in the literature that employ
argumentation in the communicative design of agents. They are grounded in
the theory of speech acts (Searle, 1976), where communication is modelled as
actions performed by an agent, as well as in the idea of dialogue games (Carlson,
1983). Dialogue frameworks have been proposed for multi-agent persuasion,
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1.1. Argumentation in AI

negotiation, deliberation and other styles of argumentation-based dialogues.

1.1.1 Potential benefits of argumentation

With argumentation present in all its forms in multi-agent systems, its potential
benefits can also be found in different parts of agent design. Indeed, argumen-
tation has been proposed to be beneficial for defeasible logics (Pollock, 1987;
Prakken and Vreeswijk, 2002) and internal reasoning to form plans (Parsons
et al., 1998). Nevertheless, the strongest claims that using argumentation is
beneficial for agents come from the introduction of argumentation-based mod-
els for multi-agent dialogue. Here, argumentation is not only proposed as a way
of modelling and understanding the design, but argumentation is claimed to
make agent interactions more efficient and more effective (Rahwan, 2005).

Many studies into argumentation-based dialogue systems leave the pro-
claimed benefits unspecified, but there are still some concrete reasons found
in the literature on the source of these benefits. First, argumentation can focus
a dialogue. If an argument cannot be contested, there is no reason to study
the particular case further (Rahwan et al., 2004). If everybody agrees that a
certain restaurant is too expensive, then clearly nobody will further ask for or
provide reasons for going here, shortening the discussion. Second, arguments
can provide a more general insight in the situation. If someone refused to eat
at a steak house because he or she is vegetarian, this knowledge can be used to
make better proposals (Sierra et al., 1997), such as proposing an Indian restau-
rant with lots of vegetarian dishes. This potentially increases the quality of the
overall outcome. Third, arguments explicitly couple premises and conclusion,
by which a statement can be checked on whether it brings insight into the dis-
cussion. It can therefore serve as a way of checking for unnecessary statements
(Prakken, 2005). Finally, by providing arguments, agents do not yet have to
reveal all their information (Dijkstra et al., 2005). Only when an argument is
questioned further information needs to be supplied. Withholding information
may be beneficial for the efficiency of a dialogue. If nobody doubts that some
restaurant serves the best steaks in town, there is no reason to explain why this
would be the case.

In conclusion, claims of benefits of argumentation for agents are most abun-
dant in relation to dialogues. Interactions are promised to be more efficient and
more effective. Intriguingly, these claims have rarely been validated. Only a
few examples exist where the aforementioned benefits are studied. Granted, the
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1. Introduction

introduction of a lot of frameworks for argumentation-based dialogues has been
accompanied by proofs of various formal properties, such as that argumentation-
based dialogues will perform at least as good as without argumentation (Rahwan
et al., 2007) or that claims derived from debate align with the underlying argu-
mentation system (Prakken, 2005). However, only few studies have looked at
the practical benefits that argumentation is supposed to bring (Pasquier et al.,
2010; Karunatillake et al., 2009).

1.1.2 Deliberation

This thesis will present how the practical benefits of argumentation can be stud-
ied in deliberation style dialogues. Before continuing, a short note is justified on
the English word deliberation. As it will appear in this thesis, starting with its
title, it pertains to the dialogue type where agents mutually have to decide on
some course of action. A decision has to be made and as such the agents will use
their knowledge to present alternatives, provide arguments why the proposal of
an alternative is justified, discuss the underlying premises, etc. Contrary to
the dialogue style, the word deliberation has also been used for the process of
reasoning from means to end. In this way, deliberation is an internal process
to consider several alternatives. Although this style of reasoning is used in this
thesis, as part of the agent behaviour, the word deliberation will be exclusively
used for the dialogue type.

1.1.3 Running deliberation example

Throughout this thesis a running example is used to illustrate how multi-agent
deliberation can be modelled and measured. Several agents will need to mu-
tually decide on a place for dinner. Every agent has its own knowledge of
alternatives, relevant background information as well as personal goals it would
like to achieve. The examples of this thesis will model and analyse the proposal
of two restaurants and the subsequent discussion thereof by two agents on why
they should (not) be selected as final outcome.

12



1.2. Research questions

a I suggest we go to the bistro.
b Why should we go there? We could go to the pizzeria in-

stead.
a In the bistro we will enjoy our dinner, for we will get served

the best steak. So I prefer to go to the bistro.
b Why would we get the best steak? The pizzeria and bistro

are equally preferable to me.
a These are the best steaks, since they are made from wagyu

cattle and therefore wagyu steaks, which are considered the
best. Moreover, in the bistro we will enjoy our dinner, for
we can drink tasty beer.

b I admit that the steaks are made from wagyu cattle. But
in this case the steaks are not the best, since they are im-
properly handled.

Agent a seemingly wants to go to the bistro, while agent b originally knew
about a pizzeria. Throughout the dialogue they ask for and provide arguments
why these options should be considered. On the one hand there is an argument
that connects the mutual goal of enjoying dinner to the proposed action to go to
the bistro. In contrast to that, the argument that steaks from wagyu cattle are
considered the best is purely based on background knowledge. In any case, the
agents form their arguments, can reason with them internally and then decide
to submit them in the dialogue, in order to win over the other agents to their
own preferred place to eat.

1.2 Research questions

As discussed above, there are many potential benefits of argumentation for
multi-agent systems. However, it still has to be shown which benefits actually
materialize and under which circumstances. The central research question for
this thesis can therefore be asked:

Research question What are the benefits of using argumentation in multi-
agent deliberation dialogues?

The focus of the research is to uncover the benefits of argumentation for the
whole multi-agent system. It might very well be possible that there is also a
potential gain for individual agents to use argumentation. Agents, especially

13
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those that are BDI-based, typically are at least partially self-interested. It is
therefore very interesting to see if individual agents can have uses for argumen-
tation as well, either in dialogue, as reasoning method to construct plans or
to validate knowledge. Unfortunately, the scope of this thesis project did not
allow for a thorough investigation into benefits for individual agents. Instead,
the benefits are studied for the multi-agent system as a whole.

1.2.1 Desirable properties

As the research into benefits of argumentation in multi-agent dialogues is lim-
ited, there is a proportional lack of development on how to test for these benefits.
This starts with the question on what exactly are these claimed benefits. Sev-
eral informal examples have been presented above, but it is not yet formalized
which properties of multi-agent dialogues are in fact desirable.

When desirable properties have been established, it is still to be modelled
how they can be measured. Given a fully played out deliberation dialogue,
how can we measure to what degree the desirable properties hold? In order
to compare dialogues, the measurements need to be quantifiable. Hence, for
each desirable property, a metric needs to be defined that explains the perfor-
mance of a dialogue through a numeric measurement. This leads to the research
subquestion:

Research sub-question 1 Which properties of deliberation dialogues are de-
sirable and how can we measure these properties?

In the above example, the agents proposed two options, explicitly stated
their preferences and gave various arguments. Say that they now settle on
going to the bistro, then how did this dialogue perform with regards to the
desirable properties of this dialogue? On a first impression the dialogue seems
fairly short and concise. Choosing the bistro also looks like a good choice, as
they did not state to prefer some other option. Still, to compare this dialogue
to another these intuitions need to be formalized and measurable.

1.2.2 Deliberation framework

It is straightforward to find benefits of argumentation by comparing agents use
argumentation to those that do not. Unfortunately, neither the modelling of
argumentation-enabled deliberation dialogues nor the method for comparing

14



1.2. Research questions

deliberating agents is standardized in the literature. Part of this thesis will
therefore concern the development of a suitable framework which models de-
liberation style dialogues and allows for comparison of different deliberating
agents:

Research sub-question 2 What is a suitable framework for specifying delib-
eration dialogues and agent behaviours and how can the performance of delib-
erating agents be compared?

Coming up with a performance indicator for a single dialogue does not yet
help to test if arguing was beneficial. To know if arguing was beneficial for the
agents in the running example, they need to be compared to agents that do not
use argumentation. Furthermore, the dialogue with a pizzeria and a bistro is not
necessarily representative for any deliberation situation. Instead, the framework
needs to support an analysis on a wide array of different deliberation situations
to draw general conclusions on the benefits of using argumentation.

1.2.3 Argumentation-based reasoning

To study the performance of dialogues means to study the performance of
agents, for the simple fact that dialogues are merely the resulting structures
of agent behaviour. Or rather, to compare dialogues with argumentation to
dialogues without it, an expressive model is required that allows for the speci-
fication of arguing and non-arguing agents.

As already hinted upon, it is not only in the dialogue that arguments are
used, but agents reason with them internally as well. The agent behaviour
framework has to cater for this type of reasoning. It allows agents to use
personal goals and background knowledge to determine the preferred options
and connects these to the generation of dialogue moves.

Research sub-question 3 How can agents use arguments to reason about
options and generate appropriate moves?

An expressive model of agent behaviour allows for the comparison of specific
arguing and non-arguing elements in agents to see their direct effect on the
benefits of argumentations. If agent a in the running example wants to further
defend the case for going to the bistro, it has several options. Perhaps it has
additional knowledge on the handling of the wagyu steaks to debunk agent
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b’s argument on improper handling of the meat. Alternatively it might have
additional reasons why the bistro will satisfy their mutual goal, such as that
the atmosphere in the place is great. In any way, the argumentation internal
to an agent will directly influence the course and therefore the performance of
a dialogue.

1.3 Thesis overview

Above, a case was made for the validation of claims that argumentation in dia-
logue is beneficial for a multi-agent system. To answer the questions that come
with this target, this thesis will introduce a platform for deliberation dialogues
and use that platform to compare arguing and non-arguing agents. It builds
upon the state of the art argumentation logics and models for argumentation-
based dialogues, which are discussed in Chapter 2.

In Chapter 3 a framework for deliberation dialogues will be proposed, which
models how agents can interact, how they can be restricted and how eventually
a decision can be made by selecting one of the proposed options in the dia-
logue. Chapter 4 introduces the idea of deliberation scenarios, which define the
situation that agents are confronted with before engaging in a dialogue. They
form a vital part of the method used in this thesis to compare arguing and
non-arguing agent behaviours. This is achieved by generating situations that
reflect typical deliberation problems in the knowledge of individual agents. This
generation method is validated in Chapter 5, which leads to the possibility of
experimentally comparing arguing and non-arguing agents.

In Chapter 6 the behaviour of agents is modelled, split up in the different
steps that agents use to reason about a scenario and to generate moves ac-
cordingly. Several variations of arguing and non-arguing agents are proposed.
Chapter 7 settles which are the desirable properties of deliberation dialogues
and, importantly, how to measure these properties. This allows for a perfor-
mance comparison of the earlier introduced agents in Chapter 8. Here, the
intuitions behind the benefits of using argumentation are tested and it is shown
why these benefits (do not) present themselves. Finally, Chapter 9 discusses
how the method and platform developed in this thesis can be used for future
research in argumentation dialogues.

16



Chapter 2

Background

The modern research field of computational argumentation is, roughly speaking,
concerned with two distinct types of arguing: the activity of discussing some
topic to find justification for a claim or action, and the evaluation of arguments
for a claim or action to derive a justified conclusion. The use of arguments in
these is different and consequently the research into models for these is distinct.
Being in discourse concerns multiple agents, or participants, each trying to
convince the others or at least searching for a mutual agreement on a claim or
proposed action. On the other hand, the evaluation of arguments is a process of
reasoning with knowledge to derive a justified conclusion, much like how a classic
logic is used to find if a certain claim follows from some body of knowledge.

The goal of this thesis is to study the use of argumentation in dialogues, but
this can not be seen in isolation from argumentation-based inference. It makes
use of an argumentation system that can evaluate arguments. We will thus need
both uses of argumentation. Firstly, Section 2.1 introduces the argumentation
system that is used in this thesis when arguments are constructed or evaluated.
Secondly, Section 2.2 describes the theory behind multi-agent communication
and the role of argumentation-based dialogue systems.

2.1 Argumentation

The primary application of arguments in computer science is that of an argu-
ment as reasoning construct. Arguments are structures that allow to draw a
conclusion based on a set of premises, which are said to provide the justification
for the argument’s conclusion. While it is natural for a human to use arguments
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in reasoning, for a computer to do so, a suitable framework is needed in which
arguments can be expressed and formally evaluated.

Arguments often pertain to the justification of some belief. For example,
‘these are the best steaks, since wagyu steaks are typically considered the best’
is a purely epistemic argument. On the other hand, there are arguments that
combine practical reasoning about actions with the reasoning about beliefs. For
example, ‘we will enjoy our dinner, for we will get served the best steak, as we
will go to the bistro’ connects an epistemic belief of the bistro serving the best
steaks with the proposal for action to go to the bistro and the goal to enjoy
dinner. Section 2.1.3 discusses the modelling of practical reasoning.

Whether an argument is purely epistemic or contains aspects of practical
reasoning, inferences are made to connect the premises to the conclusion of the
argument. Some of these inferences are strict, because their conclusion holds
without exception if the premises hold. Argumentation systems do not allow
these inferences to be disputed. For example, it makes no sense to question
the inference in ‘these are wagyu steaks, since they are steaks and they are
made from wagyu cattle’. Additionally, arguments can contain inferences that
typically hold, but to which there may be exceptions. For example, ‘these are
the best steaks, since wagyu steaks are typically considered the best’ as a rule
might be true, but many exceptions can be thought of, such as that the beef
was not sufficiently aged or that it was not properly handled. Argumentation
logics allow for defeasible inferences to be questioned, by providing other argu-
ments that attack the original argument in a specific manner. Attack between
arguments is formalized in Section 2.1.2.

In our approach, both epistemic and practical arguments are derived from
a single knowledge base, contained in a single argumentation system. To find
an acceptable claim, attack between arguments is evaluated through three ways
in which arguments can conflict, as discussed in Section 2.1.2. However, when
it comes to stating arguments in a dialogue, evaluating arguments as a single
argumentation system is no longer appropriate. Individual agents have differ-
ent background knowledge and different preferences and hence have their own
distinct argumentation system. To still find justification for a claim or proposal
for action the agents will use an argumentation-based dialogue model, as is out-
lined in Section 2.2.1. Still, individual agents can reason defeasibly with their
knowledge using their own argumentation systems. As is shown from Chapter
6 onwards, this allows them, for example, to reason whether to agree with a
statement in a dialogue and construct a counterargument where applicable.

18



2.1. Argumentation

2.1.1 Argumentation framework
The base argumentation framework used in this thesis is that of Prakken (2010),
called ASPIC+. This framework for argumentation with structured arguments
is a generalization and extension of the framework that was developed in the
European ASPIC project (Amgoud et al., 2006). The framework allows for the
construction and evaluation of structured arguments with strict and defeasible
rules, while being general enough to support both epistemic and practical rea-
soning. One interesting feature is the distinction between three different ways
of attack between arguments, which, for example, is utilized in the scenario
generation of Chapter 4.

Several features of the original framework are not needed for the purpose
of this thesis, or are only needed in a limited sense. This does not mean that
these features are not compatible with the work presented in the next chapters,
but rather that they are omitted or a specific instantiation is used. The re-
sulting framework will be called ASPIC−. Omissions or restrictions of features
are discussed at their appropriate location throughout the introduction of the
framework.

The central notion behind the ASPIC− framework is that of an argumenta-
tion system. It works as a classic proof system, but makes a distinction between
strict and defeasible inference rules and defines a preference order on the set of
defeasible rules.

Definition 2.1 Let AR be the set of all possible rules in an ASPIC− frame-
work. An argumentation system is a tuple AS = 〈L,R, cf,≤〉 such that

• L is a logical language, closed under classical negation,

• Rs ∪ Rd is a set of strict inference rules and Rd ∪ Rd a set of defeasible
inference rules, such that R = Rs ∪Rd and Rs ∩Rd = ∅,

• cf is a contrariness function cf : L −→ Pow(L) such that for every p ∈ L
it holds that cf(p) = {¬p} and cf(¬p) = {p},

• ≤ is a partial order on Rd.

There are few restrictions on the used logical language. Typical elements in
the logical language will be written as p, q, g, o, etc. There is, however, the
requirement that the language is closed under classical negation. Prakken does
not make this requirement, instead allowing for any type of contrariness relation.

19



2. Background

However, for the purpose of this study the classic logical negation suffices. The
contrariness function is therefore implemented in a straightforward fashion.

Inference rules in an argumentation system are either strict or defeasible.

Definition 2.2 Given the formulas p1, . . . , pn, p ∈ L

• a strict inference rule is of the form p1, . . . , pn
%−→ p

• a defeasible inference rule is of the form p1, . . . , pn
%=⇒ p

The elements p1, . . . , pn are called the antecedents of the rule and p the con-
sequent. The name of the rule is denoted %, which for the purpose of convenience
is added to the original rule notation. Rule names are themselves formulas in
the object language and as such can be used in rules. As object they represent
the statement that a certain rule is applicable. The negation of a rule name
object then means that the application of a certain rule is not applicable. This
makes it possible to write rules that state an exception to some defeasible infer-
ence. For example, there might be a defeasible rule wagyuSteak %1=⇒ bestSteak
to which another rule states the exception improperlyHandled %2=⇒ ¬%1.

The justification for a conclusion is based on beliefs that are taken from a
body of background knowledge called the knowledge base.

Definition 2.3 Given an argumentation system AS = 〈L,R,≤, cf〉, a knowl-
edge base is a set K such that K ⊆ L.

Knowledge consists of formulas expressed in the system’s logical language.
This thesis will not only allow expressions on beliefs, as represented by proposi-
tional logic formulas. It also includes goals and proposals for action as elements
of the logical language and thus in the knowledge from which arguments are
constructed. Chapter 2.1.3 discusses their relationship.

Prakken’s original definition allows for four different kinds of premises in
the knowledge base. Throughout this thesis only so-called ordinairy premises
are used, which can be contested by counterarguments (unlike necessary ax-
ioms), need an acceptable counterargument to be contested successfully (unlike
assumptions) and do not need a backup argument to accept the conclusion (un-
like issues). Consequently, the partition of the knowledge base into different
premise types is omitted from the framework as used in this thesis.

Arguments can now be constructed using the knowledge base and the set
of inference rules in the system. They are structured as inference trees of rule

20



2.1. Argumentation

application, an approach adopted from Vreeswijk (1997). Note that arguments
can be compound, where the conclusion of one argument is directly used as
premise in another.

Several functions are defined on arguments. conc returns the (top) conclu-
sion of an argument. prem returns the premises used in the arguments, being
formulas in K. The function rules returns the set of all strict and defeasible
rules that were used in the argument. Finally, the dsub function is used to
return all the sub arguments that used a defeasible inference rule.

Definition 2.4 Given an argumentation system AS = 〈L,R,≤, cf〉, an argu-
ment A in AS, constructed on the basis of K, is either

• p if p ∈ K, where

– conc(A) = p

– prem(A) = {p}

– rules(A) = ∅

– dsub(A) = ∅

• A1, . . . , An
%−→ p if A1, . . . , An are arguments such that there is a strict

rule conc(A1), . . . , conc(An) %−→ p ∈ Rs, where

– conc(A) = p

– prem(A) = prem(A1) ∪ . . . ∪ prem(An)

– rules(A) = {conc(A1), . . . , conc(An) %−→ p}∪ rules(A1)∪ . . .∪ rules(An)

– dsub(A) = dsub(A1) ∪ . . . ∪ dsub(An)

• A1, . . . , An
%=⇒ p if A1, . . . , An are arguments such that there is a defeasible

rule conc(A1), . . . , conc(An) %=⇒ p ∈ Rd, where

– conc(A) = p

– prem(A) = prem(A1) ∪ . . . ∪ prem(An)

– rules(A) = {conc(A1), . . . , conc(An) %=⇒ p}∪ rules(A1)∪ . . .∪ rules(An)

– dsub(A) = A ∪ dsub(A1) ∪ . . . ∪ dsub(An)
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The construction of arguments is an iterative process. The formulas in the
knowledge base can first be used to construct atomic premises, from which their
conclusions can be used to make compound arguments and so to eventually
arrive at the desired conclusion.

Example 2.1 Consider, for instance, an argumentation system with

• K = {steak;wagyuCattle; improperlyHandled;¬improperlyHandled}

• Rd = {wagyuSteak %1=⇒ bestSteak; improperlyHandled %2=⇒ ¬%1}

• Rs = {steak,wagyuCattle %3−→ wagyuSteak}

Several arguments can be constructed with this knowledge base, which can
graphically be represented. Single lined inferences are strict while double lined
inferences are defeasible.

steak wagyuCattle
A′ = %3wagyuSteak

A = %1
bestSteak

improperlyHandled
B = %2¬%1

C = ¬improperlyHandled

Note that these are not all possible arguments that can be constructed us-
ing K. For example, the premises of A and B as well as sub-argument A′ can
themselves be derived as separate arguments. Given example arguments A, A′,
B and C, the argument functions return
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conc(A) = bestSteak conc(A′) = wagyuSteak
prem(A) = {steak,wagyuCattle} prem(A′) = {steak,wagyuCattle}
rules(A) = rules(A′) =
{steak,wagyuCattle %3−→ wagyuSteak; {steak,wagyuCattle %3−→ wagyuSteak}
wagyuSteak %1=⇒ bestSteak}

dsub(A) = {A} dsub(A) = ∅

conc(B) = ¬%1 conc(C) = ¬improperlyHandled
prem(B) = {improperlyHandled} prem(C) = {¬improperlyHandled}
rules(B) = rules(C) = ∅
{improperlyHandled %2=⇒ ¬%1}

dsub(B) = {B} dsub(C) = ∅

Note that A′ is not part of dsub(A) or dsub(A′) since it uses a strict inference
rule.

A shorthand notation is available to indicate that from a certain set of
background knowledge we can construct an argument with a certain conclusion.

Definition 2.5 Given an argument A that can be constructed from a set S ⊆ L
it holds that S |∼ p iff conc(A) = p.

The argumentation system is left implicit in this notation. Also, Prakken
originally differentiated between ` and |∼ as strict and defeasible arguments re-
spectively, while the above definition uses |∼ for any argument, as the distinction
with this notation is not used further in this thesis. The above defined example
argument A with conc(A) = bestSteak is constructed using the knowledge base
K and it is therefore possible to write K |∼ bestSteak.

Finally, the combination of an argumentation system, a knowledge base and
some preference ordering over all arguments forms a so called argumentation
theory.

Definition 2.6 An argumentation theory is a tuple AT = 〈AS,K,�〉, where
AS is an argumentation theory, K is a knowledge base and � is a partial
preference order on the set of all arguments that can be constructed from K in
AS.

For the purpose of this thesis the preference over arguments is not made
explicit and unless otherwise noted the arguments are assumed to be of equal
strength.
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2.1.2 Attack and defeat
Arguments are individually advocating some conclusion, but other arguments
can exist in the argumentation theory that conflict with the argument. Indeed
the power of an argumentation framework is that it can evaluate the justification
for a claim considering a set of arguments that conflict in a specific manner.

Conflict is modelled by providing an attack relation between constructed ar-
guments in an argumentation theory. The framework of Prakken defines three
ways in which arguments can attack each other: rebutting, undercutting and
undermining. The attack between two arguments models the intuitive notion of
conflict between two arguments, but this does not yet entail that the conclusion
of the attacked argument is no longer justified. Rather, it represents that the
attacked argument is contested. An additional step, which uses argument pref-
erences, is needed to decide which arguments are successfully contested, which
is called defeated.

The first type of attack between arguments is rebuttal. A defeasible argu-
ment is rebutted if the argument is attacked on its conclusion or one of the
conclusions of its defeasible sub arguments. Hence, it states that the conclusion
(to one of the sub arguments) does not hold since the opposite is true.

Definition 2.7 ArgumentA rebuts argumentB onB′ iff conc(A) = cf(conc(B′))
such that B′ ∈ dsub(B).

The second attack type is undercutting. This is the form of attack where
one argument states an exception to some defeasible inference in the attacked
argument. It is modelled as an argument that has as conclusion the contrary
of a rule that was used in another argument. The definition makes use of the
newly introduced rule naming convention as introduced above.

Definition 2.8 Argument A undercuts argument B iff conc(A) = cf(%) such
that conc(A1), . . . , conc(An) %=⇒ p ∈ rules(B).

The final way to attack an argument is to undermine it. Undermining an ar-
gument is done by attacking one of the premises of the attacked argument. Any
argument premise can be attacked in this way as, contrary to Prakken’s neces-
sary premises, only attackable ordinary premises are allowed in the knowledge
base.

Definition 2.9 Argument A undermines argument B on p iff conc(A) = cf(p)
such that p ∈ prem(B).
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Example 2.2 Recall the example arguments A, B and C as introduced in 2.1.

steak wagyuCattle
A′ = %3wagyuSteak

A = %1
bestSteak

improperlyHandled
B = %2¬%1

C = ¬improperlyHandled

Argument A is undercut by argument B (on A) since the conclusion ¬%1 is
contrary to the defeasible rule application of %1. Argument C undermines B,
since C ′’s conclusion is contrary to the premise improperlyHandled of argument
B. That same premise improperlyHandled can itself be instantiated as an
argument B′ = improperlyHandled, which rebuts C, while C would in turn
rebut B′ since their conclusions are contrary. Note that it is impossible to
undercut (on) A′, since the application of rule %3 is a strict inference, to which
attacks are not allowed.

After the attack relations have been established, it is possible to determine
defeat between arguments. This is done by considering the preferences that were
defined in the argumentation theory, as introduced in Definition 2.6. Prakken
uses some subtleties in the way the three different types of attack result in
defeat. In particular, a difference between contrary or contradictory conflict
between arguments is used, as made explicit by the contrariness function cf.
However, this thesis strictly uses the contrary variant that is the classical nega-
tion. Moreover, special care has to be taken for arguments that contain issues
(premises that require backup), but as this thesis allows only ordinary premises,
this complexity does not apply here. For these reasons it is possible to directly
specify defeat from the attack relation and preference ordering over arguments.

Definition 2.10 Argument A defeats argument B iff one of the following holds:

• A undercuts B,

• if A rebuts B on B′ and A ≮ B′, or

• if A undermines B on p and A ≮ p.
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It must be noted that throughout the next chapters, although the framework
allows for it, the preference ordering over arguments remains mostly unused, or
rather, no explicit preferences will be given to individual arguments. On the
other hand, adopting a more complex way of specifying these preferences is still
supported in the models of this thesis.

At this point it has become possible to evaluate which arguments, and con-
sequently their conclusion, can be accepted in the given argumentation theory.
A large body or research has studied how to derive acceptable conclusions given
a set of arguments and their defeat relations. Most notably is the work done
by Dung (1995) who was able to generalize argumentation logics by consider-
ing arguments as abstract nodes in a graph, where the nodes are connected in
a directed fashion using the defeat relationship. Using the notion of conflict
free sets and an array of acceptability semantics, there are various more or less
intuitive methods to select the final justified claims, if any.

Definition 2.11 An argumentation framework is defined by a tuple AF =
〈Args,Defeat〉 where Args is the set of arguments described by Definition 2.6
and Defeat is the binary relation on Args described by Definition 2.10.

Before several (acceptability) properties are defined on argumentation frame-
works, the notions of a conflict free set and a defending set are introduced. Dung
defines that a set of arguments is conflict free if it does not contain an argument
that defeats an argument in the set. A set is said to defend an argument if it
defeats all arguments that defeat it.

Definition 2.12 Given an argumentation framework AF = 〈Args,Defeat〉 with
some set of arguments S ⊆ Args, then

• S is conflict free iff there is no A,B ∈ S such that (A,B) ∈ Defeat

• S defends an argument A ∈ Args iff for each argument B ∈ Args such that
(B,A) ∈ Defeat there exists an argument C ∈ S such that (C,A) ∈ Defeat.

Various acceptability properties can now be defined on some set of argu-
ments in a Dung-style argumentation framework. Only those relevant to this
thesis are listed. Many more variations on acceptability of arguments given
certain extensions exist. See (Baroni et al., 2011) for an up to date account on
extensions and acceptability semantics in argumentation frameworks.

26



2.1. Argumentation

Definition 2.13 Given a conflict free set of arguments S and a function F :
Pow(Args) −→ Pow(Args) such that F(S) = {A|S defends A}, then

• S is admissible iff S ⊆ F(S),

• S is a complete extension iff S = F(S),

• S is a grounded extension iff it is the smallest (w. r. t. set inclusion)
complete extension,

• S is a preferred extension iff it is a maximal (w. r. t. set inclusion) complete
extension,

• S is a stable extension iff it is a preferred extension that defeats all argu-
ments Args \ S.

Example 2.3 The knowledge base of Example 2.1 gave rise to arguments A,
B and C, of which it was identified in Example 2.2 that B undercuts A and
C undermines B. But various other arguments can be constructed with this
knowledge.

steak wagyuCattle
A′ = %3wagyuSteak

A = %1
bestSteak

A′′ = steak

improperlyHandled
B = %2¬%1

A′′′ = wagyuCattle

C = ¬improperlyHandled B′ = improperlyHandled

The abstract Dung-style argumentation theory behind this framework can
be visualized as a directed graph. The nodes represent arguments, where the
edges represent the defeat relation between arguments.

B′ C B A A′ A′′ A′′′

The resulting argumentation theory has a unique grounded extension S =
{A′, A′′, A′′′} and two preferred extensions, S = {A′, A′′, A′′′, C,A} and S =
{A′, A′′, A′′′, B′, B}, which are also the stable extensions.
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Finally, it is possible to assign an acceptability status to formulas. Accept-
ability is based on the evaluation of defeat relations in the argumentation frame-
work, given some acceptability semantics. Two types of acceptable formulas will
be used in this thesis: sceptically and credulously acceptable conclusions.

Definition 2.14 Given an argumentation theory AT = 〈AS,K,≤〉, the argu-
mentation framework AF = 〈Args,Defeat〉 on the basis of AT and a semantic
S, a formula p ∈ L is

• sceptically S-acceptable iff there exists an A ∈ Args where conc(A) = p

and A is in all S-extensions of AT

• credulously S-acceptable iff there exists an A ∈ Args where conc(A) = p

and A is in at least one S-extension of AT

Sceptical acceptability requires that there is no way to reason such that the
formula could possibly not be acceptable. In contrast, credulous acceptability
requires that there exists an argument that is part of a set that can defend
against any attack, but allows for the possibility that another conclusion can be
drawn within the same argumentation theory. Any semantic may be used, for
example, a sceptically grounded-acceptable or credulously preferred-acceptable
formula.

Example 2.4 Recall the argumentation framework of Example 2.3.

B′ C B A A′ A′′ A′′′

While there is an argument such that K |∼ bestSteak, the conclusion bestSteak
can not be sceptically or credulously drawn with grounded semantics. The only
argument that claims bestSteak, argument A, is not in any grounded exten-
sion. On the other hand, when preferred semantics is used to evaluate the
acceptability of a claim, bestSteak is credulously acceptable, since argument A
is in extension S = {A′, A′′, A′′′, C,A}. bestSteak is not sceptically acceptable
under preferred semantics, since argument A is not in the preferred extension
S = {A′, A′′, A′′′, B′, B}.
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2.1.3 Practical reasoning
In the informal introduction on arguments there was a reference to a difference
between epistemic and practical reasoning, but as so far this difference has
not yet been made explicit in the way arguments are constructed or evaluated.
Recall that an epistemic argument merely draws conclusions about beliefs, like
‘these are the best steaks, since wagyu steaks are typically considered the best’.
On the other hand, practical reasoning draws conclusions that a certain action
should be performed, taking into account some goal that needs to be achieved.
Therefore, practical arguments represent means-end reasoning, connecting a
goal to a single statement that some action should be done. For example, ‘if
we go to the bistro, we will get served the best steak and therefore enjoy our
dinner’

There have been various approaches in the literature to enhance argumen-
tation logics with practical reasoning. Atkinson et al. (2005b) have introduced
an argument scheme for practical reasoning. This scheme encodes connecting a
goal, the underlying value, a (proposal for) action and the circumstances in a
single inference step.

In the current circumstances R
Action A should be performed
To bring about new circumstances S
Which will realise goal G
And promote value V

An extensive list is provided of ways in which the application of this inference
scheme can be attacked. For example, a counterargument might state that the
current circumstances do not hold or that the performing of the action does
not lead to the claimed realization of the goal. Application of the scheme leads
to an argument, which has essentially a single inference step, combining the
value, goal, circumstances and action. For that reason, every variation in one
of the elements in the scheme leads to a new argument. The attack and defeat
between these arguments is evaluated using a value-based argument framework,
which is an extension of Dung-style argumentation frameworks. (Bench-Capon,
2003)

Every argument in Atkinson et al. (2005b,a) is an instantiation of the ar-
gument scheme for practical reasoning. As a consequence, there is no way to
combine epistemic and practical arguments. Moreover, arguments are limited
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to the single inference step that is the instantiation of the scheme and do not
allow for structured sub-arguments.

Rahwan and Amgoud (2006) as well as Bench-Capon and Prakken (2006)
have introduced logics that allow for both epistemic and practical arguments to
be combined. In both cases desires (goals) are introduced as separate language
entities, which are used to build structured arguments. These arguments form a
Dung-style argumentation graph, which is evaluated with a custom acceptability
semantic. The two papers differ in the way that desires in arguments are used
to draw conclusions and how attack among arguments is defined.

Bench-Capon and Prakken (2006) take inspiration from the abductive nature
of means-end reasoning. Desires are introduced as premise in an argument,
denoted with a desire modality D. A new inference rule type can be used to
draw (sub-)conclusions about the desirability of beliefs. For example, given
some desire to DenjoyDinner and the defeasible inference rules goToBistro %4=⇒
bestSteak and bestSteak %5=⇒ enjoyDinner an argument can be constructed that
concludes that bestSteak is now also desirable.

DenjoyDinner bestSteak %5=⇒ enjoyDinner
A′ =

DbestSteak goToBistro %4=⇒ bestSteak
A =

DgoToBistro

Attack between practical arguments is modelled through the introduction of
a new way in which arguments can attack each other and a custom acceptability
semantic called e-p-semantics. A desire-based argument attacks another if the
conclusion is a desire that is a sufficient alternative to the desire in the other
argument. An argument is an alternative of another argument if their conclu-
sions are two different desires or if they are derived using accrual of arguments
and in that share the same desire. A sufficient alternative is an argument that
is an alternative while there is no other strictly preferred argument. For exam-
ple, two atomic arguments with conclusions DenjoyDinner and DspendLittle
are alternatives and without further preference ordering they are both sufficient
alternatives of each other.

In the above example, sub-argument A′ of A is itself also an argument that
can be constructed. Unfortunately, the conclusion of A′ conflicts with that of
A, as they are sufficient alternatives of each other, resulting in two arguments
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attacking each other. Since there are no explicit preferences, which would be
unrealistic to have for all possible conclusions, neither of these arguments is
now sceptically acceptable without further relevant arguments to resolve this
mutual attack. However, intuitively there seems no reason why going to the
bistro is not a reasonable action, even when reasoning sceptically.

The problem with practical compound arguments leading to mutual attack
with sub-arguments was first established in the experimental work done which
will be presented in Chapter 8. In the knowledge bases that are used there,
the problem turned out especially prevalent, as practical arguments are used
by agents to justify proposals for action. As a result, an explosion of equally
acceptable alternatives would arise, without these alternatives being intuitively
conflicting.

Rahwan and Amgoud (2006) define attack and defeat in their structured
practical arguments in a different way, which does not result in the unnatural
problem with conclusions of sub-arguments defeating the top conclusion. Practi-
cal arguments follow the same modus ponens-based reasoning style as epistemic
arguments. Specific desire-related attack is realized though the classification of
belief-undercutting and desire-undercutting. Belief-undercuts are the type of at-
tack that ASPIC+ calls an underminer, attacking a premise. Desire-undercuts
also undermine a premise, but this premise is a desire instead of a belief. That
means that for desires to be undercut, they must be used as antecedent in a
defeasible inference rule. The above example on where to enjoy dinner there-
fore has different rules. Given some knowledge bestSteak, claiming that the
bistro serves the best steaks, and defeasible rules bestSteak %6=⇒ enjoyDinner
and enjoyDinner %7=⇒ goToBistro the conclusion goToBistro can be drawn.

bestSteak
A′ = %6

enjoyDinner
A = %7

goToBistro

However, the required inference rules arguably have an unintuitive structure,
such as the consequence to go to the bistro based on the desire to enjoy dinner.
After all, going to the bistro is justified in that we can expect the best steak
there, not on a desire to enjoy dinner. Hence, the enjoyDinner predicate should
be read not as a general desire, but rather a conditional desire to enjoy dinner
by eating the best steak.
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Three approaches to model practical, structured argumentation have been
discussed: single inference step instantiations of the argumentation scheme for
practical reasoning, abductive reasoning-inspired allotment of desires and the
distinction of belief-undercutting and desire-undercutting. To overcome the
problems that have been identified with each of these three approaches, this
thesis will adopt another way of modelling practical arguments. It will allow
for the mixing of practical and epistemic arguments, which are evaluated as a
normal Dung-style framework with preferred semantics for argument accept-
ability. The approach is to have defeasible rules that directly use goals and
actions, without an explicit desire modality, and use the standard epistemic
way of evaluating argument attack, defeat and acceptability.

Definition 2.15 Let

• Lb contain beliefs,

• Lo contain options,

• Lg contain goals

For any argumentation system AS = 〈L,R, cf,≤〉 it holds that L = Lt and
Lt = Lb ∪ Lo ∪ Lg such that Lb ∩ Lo ∩ Lg = ∅.

Any argumentation system in this thesis will use topic language Lt. The
beliefs of Lb are the normal language elements as would be used in a strictly
epistemic topic language. Lo contains options, which are statements that some
action should be done. The term option is used to indicate that arguments
are about the possible executing of some action, not about an agent’s capa-
bility, planning or execution of the action. Goals in Lg are the desires that
agents have. The three element types together form the topic language that
any argumentation system in this thesis will use.

Now that beliefs, options and goals are elements of the same logical language,
structured practical arguments can be constructed in a similar fashion to purely
epistemic arguments. These practical arguments can be compared to epistemic
arguments, do not have a problematic attack relation with sub-arguments and
use defeasible inference rules that follow a natural flow.

Example 2.5 Consider again the example phrase ‘we will enjoy our dinner, for
we will get served the best steak, as we will go to the bistro’. Relevant formulas
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in this example include a belief bestSteak ∈ Lb, an option goToBistro ∈ Lo and
a goal enjoyDinner ∈ Lg. Given knowledge base K = {goToBistro} and the set
of defeasible rules Rd = {goToBistro %4=⇒ bestSteak;bestSteak %5=⇒ enjoyDinner}
a practical argument can be constructed that concludes enjoyDinner.

goToBistro
A′ = %4

bestSteak
A = %5

enjoyDinner

Argument A′ reads ‘we will get served the best steak, as we will go to the bistro’,
while argument A reads ‘we will enjoy our dinner, for we will get served the
best steak’.

2.1.4 Software implementation
Although argumentation logics have been subject of extensive formal study
throughout several decades, there exist few software implementations of it, es-
pecially of those supporting structured argumentation. Moreover, for a logic
implementation to be of use in the context of this thesis, it needs to comply
with the ASPIC− framework.

Very recently a new implementation, called TOAST, was proposed by Snaith
and Reed (2012b). It strictly adheres to the ASPIC+ framework, supporting
all premise types, strict and defeasible rules, rule preferences, explicit premise
contrariness and various acceptability semantics. It is implemented in Java and
offers a graphical web interface as well as a web service. At the moment, TOAST
is one of the most complete and state of the art implementations. Unfortunately,
it was not yet available during the research project of this thesis.

In the master thesis of Visser (2008) another implementation of the ASPIC+
framework was proposed. Implemented in Java, it provides a graphical desktop
interface and can be used as module. Although it is limited to a propositional
logical language, it does support most of the ASPIC+ features, such as strict
and defeasible rules, the three types of argument attack and various accept-
ability semantics. Interestingly, it has support for Bench-Capon and Prakken
(2006)-style practical reasoning through e-p-semantics. Indeed, it was through
experimentation with this software implementation that the above described
issue with conflicting sub-arguments was identified.

The final ASPIC+-compatible implementation available was created by South
and Vreeswijk (2009). Originally built as proof of concept in Ruby, it was later
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developed as a full implementation of the original ASPIC (Amgoud et al., 2006)
framework as a reusable Java module. A knowledge base is defined, which may
consist of rule and belief, which are encoded as a set of body-less rules. Facts and
ordinary premises, as well as strict and defeasible rules, are supported through
the assignment of a degree of belief. This DOB is a real number in range (0, 1],
where a higher DOB results in a stronger inference (and accordingly a stronger
argument). Since the above presented model does not allow such graduation,
rules are either implemented with DOB 0.5 (i. e. defeasible) or 1.0 (i. e. strict).

Example 2.6 Consider an example situation with knowledge on where to go in
order to enjoy dinner. Two defeasible rules are available to construct a practical
argument how going to the bistro leads to enjoying dinner. An epistemic rule
is available that can undercut the inference that going to the bistro will lead to
eating the best steak.

[r4] bestSteak <- goToBistro 0.5.
[r5] enjoyDinner <- bestSteak 0.5.
goToBistro.
~r4 <- notServingSteak 0.5.
notServingSteak 0.5.

All of the rules are defeasible, as their degree of belief is set to 0.5. Querying
this knowledge base on enjoyDinner with grounded semantics will return no
while the same query for preferred semantics will yield yes.

The (South and Vreeswijk, 2009) implementation of the ASPIC+ framework
makes a distinction between two types of attack rather than the three available
in the formal model presented above. Undermining is not separately imple-
mented, but is still present in the form of rebuttal of atomic arguments. This
exploits the fact that every premise used in an argument first needs to be actu-
alized as an atomic argument before it can be used in a compound argument.
As a result, undermining becomes a specific form of rebutting and the attack
(and defeat) rules for rebutting apply.

There is an issue with the South and Vreeswijk implementation of the under-
cutter in the implementation. Any rule definition in an implemented knowledge
base will automatically add the rule name as fact, causing any undercutter on
the rule application to be rebutted. For example, if there is an argument that
applies rule p %=⇒ q, and some argument attacks it with an argument with con-
clusion conc¬%, it would automatically be rebutted with an argument stating
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conc%. This behaviour deviates from the definition of undercutting in the AS-
PIC+ framework. Unfortunately, the software built in this thesis has to work
around this issue by designing agents that simply do not play such arguments
in a dialogue, which is explained further in Chapter 8.

2.2 Agent communication

With the advancement of the agent paradigm in artificial intelligence, an array
of sub fields have been established, of which each pertain to a distinct charac-
teristic of agent design. One of the critical features that has received significant
attention is that of communication.

Typically, communication between agents is designed by means of a com-
munication language that is used by the agents to perform speech acts. (Searle,
1976) Rooted in linguistics and the philosophy of speech, a speech act basically
is an action that is performed by an agent, by which a message is sent to another
agent that will then parse and interpret it. To ensure that the agents under-
stand each other, all agents in a system are required to use the same transport
mechanism for messages and adopt the same language.

Early work on agent communication tried to define a single definitive agent
communication language for all types of dialogues. This was attempted by
coming up with a fixed set of locution types, which were supposed to provide
all types of statements that an agent would need to make. (FIPA, 2000) Ev-
ery locution type is then associated with some content as expressed in a topic
language, being a logical language that agents agree upon. The locution and
content together is called a performative. For example, an agent could in-
form another agent of some status to be normal by sending a message such as
inform(status(normal)). The interpretation of such a message was at first left
to the implementation of a specific agent, but in later research the content of
messages was bound to a specific ontology and every performative was bound
to certain preconditions, for an agent to be able to state it, and postconditions,
enforcing a change in the other agent’s beliefs.

2.2.1 Argumentation in dialogue

While in human communication there exist simple statements like providing or
requesting information, it is often the case that statements are actually part of
a dialogue process to find a mutual belief or mutually reach some decision. The
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content of messages is thus not isolated, but rather part of a dialogical argu-
ment. The same holds for agents, in that agents are autonomous and therefore
need communication to align beliefs and coordinate their actions, including to
negotiate on available resources and to mutually make decisions.

Early work that adopted argumentation in multi-agent systems was done
by Parsons and Jennings (1996); Amgoud et al. (2000); McBurney and Parsons
(2002). These studies introduced dialogue frameworks in which a tailored com-
munication language is used to allow expression of arguments between agents
to agree on some initial claims or negotiate on scarce resources. By allowing
arguments rather than merely informational statements, it was possible to eval-
uate the status of the initial claim or proposed resource division. Importantly,
the rationale for this work was not only in the ability to allow agents to argue
in dialogues, but that the use of argumentation would allow the agents to either
improve the outcome of the dialogue situation or improve on the way that an
outcome comes about. Some of these benefits were proved formally, while other
benefits still need to be defined and tested, being one of the reasons for the
research behind this thesis.

2.2.2 Typology of argumentation-based dialogues

Frameworks for argumentation-based dialogues have been proposed for a vari-
ety of dialogue types where some form of argumentation is appropriate. The
most influential work in distinguishing types of dialogues is that of Walton and
Krabbe (1995). They introduce a typology of various types, grounded in the
philosophy of human argument. (Walton and Krabbe were interested in fal-
lacies in human dialogue by studying how an utterance leads to commitment.
Although this was later covered in agent communication research as well, most
frameworks for argumentation dialogues merely use the typology to delineate
their dialogue scope.)

Although Walton and Krabbe claim to not provide an exhaustive or even
fully developed typology, and allow for mixing of types within a single dialogue,
their distinction between 6 general types has been widely adopted. Most clearly
defined and commonly studied of these are persuasion, negotiation, inquiry,
deliberation and information seeking. Eristic dialogues have received lesser
attention, as their do not (yet) translate to agent theory. Table 2.1 list the
dialogue types and their characteristics regarding the dialogue goal and the
goal of its participants.
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Table 2.1: Dialogue typology as taken from Walton and Krabbe (1995)

type initial
situation

main goal participant’s
aims

side benefits

Persuasion Conflicting
points of
view

Resolution of
such conflicts
by verbal
means

Persuade
the others

Develop & Reveal
positions, Build up
confidence, Influence
onlookers, Add to
prestige

Negotiation Conflict of
interest &
Need for
cooperation

Making a
deal

Get the
best out of
it for
oneself

Agreement, Build up
confidence, Reveal
positions, Influence
onlookers, Add to
prestige

Inquiry General
ignorance

Growth of
knowledge &
Agreement

Find a
proof or
destroy one

Add to prestige,
Gain experience,
Raise funds

Deliberation Need for
action

Reach a
decision

Influence
outcome

Agreement, Develop
& Reveal positions,
Add to prestige,
Vent emotions

Information
seeking

Personal
ignorance

Spreading
knowledge &
Revealing
positions

Gain, pass
on, show or
hide
personal
knowledge

Agreement, Develop
position, Influence
onlookers, Add to
prestige, Vent
emotions

Eristics Conflict &
Antagonism

Reaching a
(provisional)
accommoda-
tion in a
relationship

Strike the
other party
& Win in
the eyes of
onlookers

Develop & Revela
positions, Add to
prestige, Gain
experience,
Amusement, Vent
emotions

37



2. Background

By far the most commonly studied are frameworks for persuasion dialogues,
also called dispute (McBurney and Parsons, 2002; Prakken, 2005). Agents dis-
cuss the truth status of a claim in order to convince others. Persuasion is almost
exclusively a competitive game, as even the mutual goal of resolution is usually
strongly subordinate to the personal goals. Persuasion has received major at-
tention from fields such as law, linguistics and multi-agent theory and as such
a significant amount of formal models for it exists.

Research on negotiation has also resulted in a rich body of formal frame-
works. Negotiation is used by agents if (usually scarce) resources are available
in a system, which agents need to work with. The earlier argumentation-based
dialogues models were for negotiation (Parsons and Jennings, 1996) and early
experimental work on argumentation dialogues also used negotiation to investi-
gate the use of argumentation in multi-agent dialogues (Pasquier et al., 2010).
This interest is perhaps due to the easy to see uses of arguments to reveal re-
source division proposals that would otherwise not be possible. Negotiation is
predominantly competitive, but mutual seeking into alternatives can increase
the realm of possible outcomes. Moreover, since failure to agree is often a highly
undesirable situation there can be pressure to cooperate on finding the best deal.

Inquiry revolves around finding the truth status of some claim or just gen-
erally acquiring more knowledge, much like the scientific investigation process
itself. It has received a relative modest amount of attention from the multi-agent
research community, Black and Hunter (2007) being one exception, maybe due
to the almost exclusively cooperative nature. Still, the process is very well
suited to be supported by an argumentation logic, to constantly evaluate newly
acquired information through the development of acceptably arguments in the
background knowledge. Information seeking dialogues are highly similar, al-
though the dispersion of knowledge is more important as agents seek for infor-
mation from a more personal motivation, rather than a general one.

Finally, deliberation is a style in which agents acknowledge the need for
action, which they mutually have to decide on. Deliberation dialogues contain
an interesting balance between cooperation, since agents have a mutual goal to
agree on an action, and competition, with agents having both compatible and
incompatible goals. Moreover, deliberation combines practical and epistemic
reasoning and typically concern more than two agents.
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2.2.3 Elements of dialogue frameworks
A framework for any of the argumentation-based dialogue types will always
include a communication language, a dialogue structure, a move evaluation
method and a dialogue protocol. These elements will now be briefly introduced.

As described above, agents communicate by using speech acts. These con-
tain not only the content of the communicative act, but also a locutionary type.
While the content is constructed in the topic language that is agreed upon, the
locution of a speech act is one of the types that is defined by the communication
language. Moreover, the communication language in a dialogue framework typi-
cally enforces the type of content of every locution, possibly even restricting the
content to include or exclude certain statements. A communication language
may include locutions such as inform, argue and prefer.

Individual communicative acts by the agents, also called moves, are related
and evaluated in a dialogue framework though the specification of a relationship
between the acts and describing the effect of a move. First of all, a framework
allows agents to play by explicitly giving turns to agents. Turn taking can be
defined in three ways: direct replying to a previous move, resulting in a linear
structure, requiring a move target, giving rise to an explicit tree-like reply struc-
ture, or by a direct playing of arguments, directly forming an argumentation
system with attacking (and defeating) arguments.

Through taking of turns and playing of moves, the agents construct a dia-
logue. This dialogue, being a linear structure, a tree or a dialectical structure of
arguments, can in turn be evaluated to draw a conclusion. Based on the struc-
ture and the content of the moves, the outcome of a dialogue is determined using
an outcome function that is specific to the type of dialogue. Outcome selec-
tion can be direct, following from the dialogue structure, as well as indirect, for
example by constructing an argumentation system with the moved arguments.

Finally, the agents are restricted in playing moves through a dialogue pro-
tocol. Moves allowed by a protocol are referred to as legal moves at a certain
state in a dialogue. Protocol rules may include disallowing replies to ones own
moves, restricting the use of certain locutions in reply to a specific locution type
or enforcing an agent to be consistent regarding earlier moves.

The first step towards the evaluation of the benefits of argumentation in
multi-agent dialogues is the introduction of a suitable framework for argumentation-
based dialogues. The next chapter will introduce the model for deliberation style
dialogues that is used in this thesis.
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Chapter 3

Deliberation dialogue
framework

The previous chapter introduced the general concepts behind argumentation-
based dialogues and briefly introduced how such dialogues can be modelled using
a structured framework. This chapter will present a framework for deliberation
style dialogues between multiple agents. The design of this framework is driven
by the characteristics of the deliberation dialogue type. The initial situation,
the dialogical goal of reaching a decision and the personal interests of agents
will each be modelled explicitly and concepts are introduced that allow for the
playing of moves, including proposals and arguments. Agents are restricted in
which moves they can play using a deliberation protocol. In the end, it is shown
how a dialogue can be evaluated and how a proposal can be selected as dialogue
outcome.

3.1 Existing deliberation frameworks

While many frameworks for argumentation-based dialogues exist in the litera-
ture, not many pertain to deliberation. Two notable exceptions are the studies
by McBurney et al. (2007) and Black and Atkinson (2010).

McBurney et al. (2007) have proposed a framework for deliberation dialogues
that allows multiple agents. The paper’s main goal is to provide a protocol that
allows for the open nature of deliberation, giving the agents much freedom for es-
tablishing goals, constraints, perspectives, facts, actions and evaluations. Goals,
actions and facts correspond to the goals, options and beliefs, respectively, as
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defined in Section 2.1.3. Constraints and perspectives are general expressions,
much like expressing a belief but with the explicit intention of discussing the
constraint, perspective or evaluation. For example, an agent can propose the
evaluation of an action, which signals that other agents should express their
preferences, ask for more information or reject the action.

A deliberation dialogue moves through several stages. Agents explicitly join
and leave the dialogue. Via inform and propose stages, agents are asked to
evaluate and decide on actions in the consideration, revision, recommendation
and confirmation stages. Stages are entered and left based on the statements
by the agents and stages in turn restrict the legal moves. The internal struc-
ture of move content is left mostly unspecified. Notably, there is no specific
argumentation logic to give arguments or counterarguments.

The framework puts few hard constraints on the course of the dialogue and,
importantly, does not try to establish a formal way for determining the outcome
of a dialogue based on the played moves. By contrast, the framework proposed
in this chapter will provide a way to evaluate the status of proposed actions
based on the played moves and their explicit reply structure. Moreover, the
dialogue structure will be used to further restrict agents in which moves they
can play. Several protocol rules will be discussed that are useful in supporting a
more structured evaluation and lead to more coherent dialogues than is possible
with the liberal protocol of McBurney et al..

Black and Atkinson (2010) have also proposed a framework for deliberation
dialogues. Special attention is given to the way the agents’ moves lead to a dia-
logue outcome in the form of a selected action. Except for opening and closing
a dialogue, every move is either a single practical argument or a statement of
agreeing on one of the earlier played arguments. Every practical argument is
an instantiation of the argument scheme for practical reasoning, discussed in
Section 2.1.3, and these arguments together form a value-based argumentation
framework that can be evaluated following the earlier discussed work by Atkin-
son et al. (2005b). Apart from requiring an action to be played in an argument
before agreeing to it, there are no restrictions on which moves agents can play.

Importantly, it is shown that, when agents adhere to the dialogue protocol,
any agreed upon dialogue outcome is also acceptable to both agents. That
means that, although no outcome is enforced, for every outcome the agents
have an acceptable argument for it. Arguably this is good, since agents are not
forced to go along with an action that they disapprove of.

Arguments in this deliberation framework consist solely of a single inference

42



3.2. Languages and dialogue structure

step, that is, the instantiation of the argument scheme for practical reasoning.
This allows for the comparison of proposed actions in a Dung-style fashion.
However, as already described in the previous chapter, this logic does not allow
for arguments with further structure or purely epistemic arguments. Hence, the
framework does not allow the agents to discuss factual information surround-
ing proposed options. As an extension, the dialogue protocol merely supports
proposing and accepting of practical arguments, where the practical arguments
(potentially) conflict directly. It does not support asking for justification or
providing of counterarguments.

Another, very recent addition was proposed by Atkinson et al. (2012), which
makes concrete the interplay between persuasion and explorative deliberation.
Moving between these dialogue types is actuated by the strength of user pref-
erences and the appropriate use of a different set of speech acts. Unfortunately,
no explicit method is defined on how to derive the outcome from the moves
that the agents made. Instead it seems that this is assumed that agents, in
a separate dialogue phase, explicitly accept some option or otherwise make a
decision. While the interplay between persuasion and deliberation is elegantly
modelled in this paper, the time of its publication was after the development
and description of the model in this thesis.

3.2 Languages and dialogue structure

A deliberation framework will now be introduced based on the framework for
persuasion dialogues of Prakken (2005). It is adjusted for use with deliberation
dialogues, which includes allowing for more than two agents, the introduction of
proposals, preferences over proposals and an action as dialogue outcome, and the
reworking of turn taking, move evaluation and protocol rules. Definitions 3.2,
3.3, 3.4, 3.11 and 3.12 are taken from Prakken (2005), while the other definitions
in this chapter are new or reworked for use with deliberation.

3.2.1 Context

Before agents can discuss anything, a context needs to be set. In frameworks
for agent communication, this context specifies the languages that agents use to
communicate and to describe the topic that they are discussing. The topic lan-
guage is the logical language for practical reasoning, which consists of options,
goals and beliefs. Arguments are expressed and evaluated using the ASPIC- ar-
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gumentation system described in Section 2.1. Every agent is assumed to know
about the used language and argumentation logic.

Definition 3.1 A deliberation dialogue context DK = 〈AS,Lt, Lc,P,A, gd〉
consists of:

• An ASPIC− argumentation system AS = 〈Lt, R, cf,≤〉, where Lt is the
topic language of Definition 2.15

• A communication language Lc

• A protocol P

• A sequence A = 〈a1, . . . , ai, . . . , an〉 of agents, where agent(i) = ai

• A mutual goal gd ∈ Lg

Recall that the topic language L contains options Lo, goals Lg and beliefs
Lb, which are disjoint sets of language elements. Typical elements are denoted
o ∈ Lo, g ∈ Lg, p ∈ Lb and a ∈ A. agent(i) is used to refer to the ith agent in
the sequence of all agents A, where i is said to be the identifier of the agent.

When a deliberation dialogues commences, agents realise, or acknowledge,
the need for action. That is, the agents commit themselves to finding the best
course of action for some problem. While some models for deliberation dialogue
in the literature include the process of establishing this dialogical goal in the
deliberation framework, such as that of McBurney et al. (2007), here the goal is
made explicit as part of dialogue context. Every agent is assumed to adopt this
mutual dialogue goal and to work towards finding an action that supposedly
realises it. Note that later chapters will discuss an agent’s individual goals, and
how these may coincide or conflict with the mutual goal in the dialogue.

Every dialogue context DK is associated with a mutual goal gd that defines
the objective that the agents agreed upon. The dialogue purpose is to reach
a decision on a single course of action that fulfils the mutual goal. The final
course of action is determined by some outcome selection function, as defined,
based on the proposals made by the agents in the dialogue.

3.2.2 Communication language
As explained in Section 2.2.3, every dialogue system contains a communication
language. This consists of several types of locutions specific for a deliberation
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style dialogue. Every locution is associated with some content, which has a spe-
cific type. For example, the locution to make proposals only accepts options and
the locution to state an argument only accepts arguments expressed following
the ASPIC- framework. The medium of communication is left unspecified, but
the agents are assumed to be able to receive and process all utterances, without
distortion or ambiguity. Finally, the communication language here presented
defines for each speech act an attacking or surrendering relationship with other
speech acts.

Definition 3.2 , The communication language Lc in a dialogue context DK =
〈AS,Lt, Lc,P,A, gd〉 is a set of locutions L and two binary relations Sa and Ss

of attacking and surrendering reply on L. Every s ∈ L is of the form p(l) where
p is a performative and l ∈ Lt or l is an argument expressed in the ASPIC−
framework. Sa and Ss are disjunct and irreflexive. Locutions cannot attack one
locution and surrender to another. Every surrendering locution has an attacking
counterpart, which is an attacking locution in Lc.

A statement by one of the agents in a dialogue, using one of the available
speech acts, is called a move. A move is not only associated with the speech
act and some move content, but is also assigned a unique number, a reference
to the player that made the move and a move target. The target of a move
is either (the identifier of) another move or, in case the move did not target
another move, 0.

Definition 3.3 The set of all possible moves M defined as N × A × Lc × N
where each element of a move m respectively is denoted by:

• id(m), the move identifier,

• player(m), the identifier of the agent that played the move,

• content(m), the speech act of the move,

• target(m), the move target.

The locution types available in communication language Lc are itemized in
Table 3.1, each with the appropriate attacking and surrendering replies. The at-
tacking counterpart for each surrendering locution is displayed in the same row.
The locutions that deal with proposals (propose, inform, why-propose, prefer and
prefer-equal) are taken from McBurney et al. (2007) while the ones dealing with
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Table 3.1: The available speech acts in the communication language Lc, where
every o, o′ ∈ Lo and p, q ∈ Lb and A,B are arguments in AS

speech act attacks surrenders
propose(o) why-propose(o)

reject(o)
why-propose(o) argue(A) where o ∈ prem(A)
reject(o)
prefer(o, o′)
prefer-equal(o, o′)
skip
inform(p)
argue(A) argue(B) where B defeats A concede(p) where p = conc(A)

why(q) where q ∈ prem(A) concede(q) where q ∈ prem(A)
why(p) argue(A) where p = conc(A) retract(p)
concede(p)
retract(p)

persuasion (argue, why, retract, concede) are adopted from Prakken (2005)’s
framework. Below the term proposal move is used when the content(m) =
propose(o), argue move is used when the content(m) = argue(A), etc.

Proposals, forwarding an option to be considered as dialogue outcome, are
made using the propose speech act, which takes an option o ∈ Lo. Proposal
moves can be questioned using the why-propose speech act, which explicitly
targets the original proposal. Alternatively, the rejectmove can be used if agents
do not argue, but limit themselves to proposing and rejecting options. Agents
state preferences over already proposed options using prefer and prefer-equal,
which both take two options o, o′ ∈ Lo. skip is a content-less speech act with
special meaning to end a turn, as specified below.

Agents can play arguments using the argue speech act. It takes a well-
formed argument expressed in the context’s AS as content and is used to provide
backup to earlier statements, for options as well as beliefs, or to counter-attack
another argument. Arguments supporting a proposal are required to use the
proposed option as premise. This is further formalized as a dialogue protocol
in Definition 3.14 below. Arguments supporting a specific claim, some belief
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p ∈ Lb, are required to conclude with the supported claim, that is, such an
argue(A) move supporting p has p = conc(A). Arguments played in response
to a previous argue move must defeat the attacked argument, as defined by the
defeat relation of AS.

Inform, concede and retract moves all hold a well-formed formula p ∈ B.
Informing has a purely informative meaning, as they can not be attacked, similar
to the inform speech acts in agent communication languages such as FIPA (2000)
and the assert statement in the model of McBurney et al. (2007). Conceding
and retracting are surrendering moves used to state that the agent no longer
considers some earlier claim as significant or does not wish to further pursue
discussing it. The exact meaning of surrendering to claims and how it affect
the meaning of moves is formalised below.

Note that for every move m where content = propose, inform, skip, prefer or
prefer-equal it holds that target(m) = 0, because of the absence of an attacking
or surrendering reply relation in Lc. All other locutions always have an explicit
target move, such that target , 0. The communication language is extendible
as long as the attack relation of speech acts is specified.

Example 3.1 In Section 1.1.3, an example dialogue was introduced in which
two agents who want to go to dinner together share a mutual goal to enjoy
dinner, that is, the dialogue context’s mutual goal gd = enjoyDinner. The
moves of their dialogue are presented in Table 3.2, where the natural language
is represented in speech acts on the right. Note that skip moves are numbered
but not listed.
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Table 3.2: An example dialogue showing the mapping of natural language to speech acts, where moves are
marked with their numeric identifier and the agent (a or b) that made the move

move statement logical form
1a I suggest we go to the bistro. propose(goToBistro)
3b Why should we go there? why-propose(goToBistro)
4b We could go to the pizzeria instead. propose(goToPizzeria)
6a We will enjoy our dinner, for we will get served

the best steak, as we will go to the bistro.
argue(goToBistro; goToBistro %4=⇒ bestSteak;

bestSteak %5=⇒ enjoyDinner |∼ enjoyDinner)
7a So I prefer to go to the bistro. prefer(goToBistro, goToPizzeria)
9b Why would we get the best steak? why(bestSteak)
10b The pizzeria and bistro are equally preferable

to me.
prefer-equal(goToBistro, goToPizzeria)

12a These are the best steaks, since wagyu steaks
are typically considered the best and these are
wagyu steaks since they are steaks made from
wagyu cattle.

argue(steak;wagyuCattle;
steak,wagyuCattle %3−→ wagyuSteak;
wagyuSteak %1=⇒ bestSteak |∼ bestSteak)

13a We will enjoy our dinner, for we can drink
tasty beer, as we will go to the bistro.

argue(goToBistro; goToBistro %6=⇒ tastyBeer;
tastyBeer %7=⇒ enjoyDinner |∼ enjoyDinner)

15b I admit that it’s made from wagyu cattle. concede(wagyuCattle)
16b But in this case the steaks are not the best,

since they are improperly handled.
argue(improperlyHandled;

improperlyHandled %2=⇒ ¬%1 |∼ ¬%1)
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3.2.3 Dialogue tree structure
The individual moves by the agents combined form the deliberation dialogue
structure.

Definition 3.4 The set of dialoguesM≤∞ is the set of all sequencesm1, . . . ,mi, . . .

from M , where each ith element in the sequence has identifier i and for each mi

in the sequence it holds if target(mi) , 0 then target(mi) = j for some mj pre-
ceding mi in d. The set of finite dialogues M<∞ is the set of all those dialogues
that are finite, where one such dialogue is denoted by d.

Although moves are played in sequence, the resulting dialogue is not linear
in structure, as moves are not merely a direct reply to the previous move.
Instead, moves can explicitly target an earlier move and moves can be targeted
by multiple other moves. In particular, a propose(o) move, which has no target,
will be the root of a proposal tree, further formed by the directed replies.

Definition 3.5 For each proposal move mi in dialogue d a proposal tree P is
defined as follows:

1. The root of P is mi.

2. For each move mj that is a node in P , its children are all moves mk in d
such that target(mk) = mj .

For any move m in proposal tree P we write proposal(m) = mi.

This is a tree since every move in d has at most a single target. Note that
skip, inform, prefer and prefer-equal moves are not part of any dialogue tree.
Instead, they have a special function, as explained below. Figure 3.1 shows the
proposal trees that can be constructed from the example dialogue of Table 3.2.

Every path from the top of a proposal tree to one of the leafs represent a
separate line of dispute. Each line forms another perspective in the discussion
of the proposed option. As formalized below, it does not make sense to play
the same move multiple times within a line of dispute, as it does not bring new
information to the discussion.

Definition 3.6 A line of dispute in a dialogue d is a sequence of moves 〈m0, . . . ,

mi, . . . ,mn〉 in d where content(m0) = propose(o) and for every move in the
sequence it holds that target(mi) = id(mi−1).
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1a : propose(goToBistro) 4b : propose(goToPizzeria)

3b : why-propose(goToBistro)

6a : argue(goToBistro; goToBistro %4=⇒ bestSteak;bestSteak %5=⇒ enjoyDinner |∼ enjoyDinner)

13a : argue(goToBistro; goToBistro %6=⇒ tastyBeer; tastyBeer %7=⇒ enjoyDinner |∼ enjoyDinner)

9b : why(bestSteak)

12a : argue(steak;wagyuCattle; steak,wagyuCattle %3=⇒ wagyuSteak;wagyuSteak %1=⇒ bestSteak |∼ bestSteak)

15b : concede(wagyuCattle) 16b : argue(improperlyHandled; improperlyHandled %2=⇒ ¬%1 |∼ ¬%1)

Figure 3.1: Proposal trees of the example dialogue of Table 3.2
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3.2.4 Turn taking

Agents do not randomly make moves in a dialogue. Instead, turns are given
in sequence to allow one agent to make moves at a time. A single turn may
consist of multiple moves by an agent. Which agent currently is supposed to
play a new move is determined by the turn taking function. Exactly one agent
is identified as the new turn taker, based in the existing moves in a dialogue.

Definition 3.7 A turn taking function T : D −→ A maps a deliberation dia-
logue to a single agent.

An agent has to explicitly state that it wants to end its turn by playing a
skip move. Otherwise the next player to move will always be the player of the
last move in the dialogue.

Definition 3.8 For a dialogue d = 〈m1, . . . ,mn〉 the turn taker T (d) = agent(player(mn))
unless content(mn) = skip in which case T (d) = agent(i) where i = player(mn)+
1 if agent(i) ∈ A or else i = 1.

Note, however, that additional rules in the system may prevent an agent to
keep on making moves by which it would prevent other agents from contributing.
It is shown below how the dialogue protocol can restrict the possible moves an
agent can make, even forcing an agent to skip turn.

3.3 Dialogical status of a move

The formal framework for persuasion dialogues of Prakken (2005), on which
this deliberation framework is based, was introduced to study how the dialogue
structure can be utilized to give a dialogical status to the moves the agents make.
It was shown that, without maintaining an explicit underlying argumentation
system, the status of the initial claim can be evaluated by assigning a status to
every move, based on the move’s replies. It will now be explained how this idea
is extended for use with deliberation dialogues, in order to assign a dialogical
status to proposals. Intuitively, this status represents whether a proposal seems
justified, based on the attacking arguments and counter-attacks.

Every move in a proposal tree is always either in or out, drawing upon the
explicit move targets and the difference between attacking and surrendering
replies.
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Definition 3.9 The move status of a move m in a proposal tree P is in in
dialogue d iff:

1. m is surrendered in d by every agent a ∈ A where a , player(m); or else,

2. m has no attacking replies in d that are in.

Otherwise it is out.

From the definition it follows that, for a move to be surrendered, every agent
that is not the original player needs to surrender to the move. Surrendering is
done explicitly, by moving a surrendering reply.

Definition 3.10 A move m is surrendered in a dialogue d by some agent a iff:

1. m is an argue move A and a has made a reply m′ = concede(conc(p)); or
else

2. m is no argue move and a has made a surrendering reply to m in d.

Example 3.2 The box colour and shape of the moves in Figure 3.1 signify the
move status. Move 1, why-propose(goToBistro), played by b is out, because it
has an attacker that is in. The surrendering reply 15 is not enough to make
move 12 out, as it is not the conclusion of the argue move 12 that was conceded.
However, the argue move 16, played by agent b, does make move 12 out, since
that now has an attacker that is in.

At first it might seem peculiar that other agents can make a move in by
surrendering to it, and that all agents need to surrender to a move before it
becomes in. However, even if the agent that originally made some statement
may (no longer) agree with it, other agents might agree and assigning an in
status to the move would force those agents to make the move again, possibly
causing a loop.

Every move is assigned a status, but that of propose is of particular interest.
It signifies whether the proposed option is still a viable alternative. Since the
status of this proposal move is directly influenced by the other moves in the
tree, it is also possible to identify whether a new to be played move is relevant
with relation to the status of the proposal move.

52
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Definition 3.11 An attacking move m in a dialogue d is relevant iff it changes
the move status of proposal(m). A surrendering move is relevant iff its attacking
counterpart is.

Depending on the domain, a different notion of surrendered move or rele-
vance may be useful. Prakken describes a notion of weak relevance, as opposed
to the normal, or strong, relevance, that may be adopted. It is weaker in the
sense that an agent can contribute multiple ways to change the proposal tree
root and still be relevant. This is achieved by only requiring a move to create
an additional way to influence the status of a proposal.

Definition 3.12 An attacking move m in a dialogue d is weakly relevant iff
it creates a new or removes an existing winning part in the proposal tree P
associated with proposal(m) in d. A surrendering move is weakly relevant iff its
attacking counterpart is. If the proposal(m) is in, a winning part wP for this
tree P is defined as follows:

1. First include the root of P ;

2. For eachm of odd depth, ifm is surrendered by every agent a ∈ A, include
all its surrendering replies, otherwise include all its attacking replies;

3. For each m of even depth, include one attacking reply m′ that is in in d;

The idea of a winning part is that it is ’a reason’ why the proposal is in
at that moment. Since this is not unique, there may be alternative attacking
replies, a move is already weakly relevant if it succeeds to create an additional
winning part or removes a winning part.

Example 3.3 In the dialogue of Example 3.1, move 13 by player a, providing
an extra argument why going to the bistro leads to enjoying dinner, was not
strongly relevant. It did not flip the dialogical status of the propose(goToBistro)
move at the state of the dialogue after move 12. It did not flip the status of the
proposal since argue move 6 was still in at that moment. On the other hand,
move 13 was weakly relevant, as it did create a new winning part.
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3.4 Protocol rules

Agents, even if it is their turn, can not freely make moves. Rather, agents are
bound by a protocol that dictates which moves can be played, based on the
existing moves in a dialogue. Those moves are called the legal moves.

Definition 3.13 For any deliberation dialogue contextDK = 〈AS,Lt, Lc,P,A, gd〉,
protocol P on M is a function on a non-empty set of legal finite dialogues
D ⊆ M<∞ and mutual goal gd such that P : D × Lt −→ Pow(M). The
elements of P(d) are called the legal moves after d. P must satisfy the condi-
tion that for all legal finite dialogues d and moves m it holds that d ∈ D and
m ∈ P(d) iff d ∪ 〈m〉 ∈ D.

Although a protocol filters the set of moves that an agent can make, it is
not yet a strategy. Chapter 6 details how agents can further use heuristics
and concrete strategies to select the moves to play in a turn. Which protocol
rules exactly should be adopted is depending on the specific deliberation con-
text. There are, however, several rules that apply to every deliberation dialogue
situation.

Definition 3.14 A protocol P is a minimal deliberation protocol iff for all
moves m and all dialogues d with associated mutual goal gd such that m ∈ P(d)
it is satisfied that:

R1. player(m) = T (d),

R2. for every proposal move m′ ∈ d it holds that if content(m) = content(m′)
then m = m′,

R3. for every m′ ∈ d where m , m′, and m and m′ are in a single line of
dispute, it holds that content(m) , content(m′),

R4. if content(m) = prefer(o, o′) or prefer-equal(o, o′) it holds that the resulting
option ordering maintains transitivity and antisymmetry,

R5. if target(m) = m′ and content(m′) = why-propose(o) then content(m) =
argue(A) where conc(A) = gd and q ∈ prem(A).

The rules of a minimal protocol ensure that the dialogue structure is kept
consistent and sensible. Rule R1 states that agents only make a move when
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they have the turn. Rule R2 ensures that proposals are unique in a dialogue.
Rule R3 forbids agents to repeat moves in a single line of dispute. Rule R4
constrains agents to respect the option ordering that is updated by prefer and
prefer-equal moves, as specified later in Definition 3.21. Rule R5 enforces that
arguments supporting a proposal show how the mutual goal is achieved. This
rule is important in demanding the agents contribute to finding an option that
could bring about the mutual goal.

There are some additional rules that may be enforced in a deliberation dia-
logue. Each of them further restrict the freedom of the agents, but can also make
the dialogue more focussed. Chapter 9 further explores the effect of protocols
on deliberation dialogues.

Definition 3.15 A protocol P is a confined deliberation protocol iff it is a min-
imal deliberation protocol and for all moves m and all dialogues d such that
m ∈ P(d) it is satisfied that:

R6. if m is an attacking move it holds that player(m) , player(target(m)),

R7. if m is a proposal move then for every proposal move m′ ∈ d where
player(m) = player(m′) there is a movem′′ where id(m) > id(m′′) > id(m′)
and player(m′′) , player(m),

R8. m is relevant w.r.t. respectively Definition 3.11 or Definition 3.12 or
content(m) ∈ {skip, prefer(o, o′), prefer-equal(o, o′)}.

Rule R6 disallows agents to attack their own moves. Rule R7 restricts agents
to make at most one proposal per turn. Finally, rule R8 is used if agents should
only play strongly or weakly relevant moves in the dialogue, not considering
skip, prefer and prefer-equal moves.

3.5 Dialogue outcome

Every dialogue is supposed to come to an end. A deliberation dialogue termi-
nates if all agents no longer make other moves than directly skipping. This is
enforced formally by making the set of legal moves, defined by the protocol,
empty.

Definition 3.16 If in a dialogue d = 〈m0, . . . ,mn−|A|+1, . . . ,mn〉 every m ∈
〈mn−|A|+1, . . . ,mn〉 content(m) = skip then P(d, gd) = ∅.
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The example dialogue of Table 3.2 ended after three consecutive explicit skip
moves. The rationale behind the termination rule is that each agent should have
the opportunity to make new moves when it still wants to. However, to prevent
agents from endlessly skipping until some other agent makes a beneficial move
or even a mistake, the number of skip moves is limited.

At any moment in time throughout the dialogue, it is possible to identify
the list of proposed options. These are simply those options that have been
proposed by the agents with propose moves.

Definition 3.17 The set of proposed options for a dialogue d is the set of
options Qd = {o|propose(o) ∈ d}.

In the explanation of move relevance it was already shown that the status of
proposal moves is of special interest. It defines whether the option, as contained
in a propose move, can be justified or should be doubted because it is either
attacked by some argument or it was not discussed at all.

Definition 3.18 An option o ∈ Od in any dialogue d is justifiable iff move(o)
is in in d; otherwise it is disputed.

Example 3.4 In the dialogue of Example 3.1, the set of proposed options Qd =
{goToBistro, goToPizzeria}. Since for both options their proposing moves are
in, both options are justifiable.

The actual selection of a dialogue outcome is a complicated matter by itself.
In any case, the outcome, which is a statement that some action should be done
is one of the options that were proposed in the dialogue.

Definition 3.19 Given a a deliberation dialogue context DK = 〈AS,Lt, Lc,P,
A, gd〉 and a dialogue d, the dialogue outcome function is a selection function
O : D×Lg −→ Lo mapping dialogue d and mutual goal gd to a single proposed
option o ∈ Qd.

Agents can explicitly state preferences for certain proposed options during
the dialogue. They do this by playing prefer and prefer-equal moves, which state
that they prefer one option over another or that they have no preference be-
tween two options. The explicitly stated preferences can be used to construct
a preference ordering for each agent using an option preference relation. Op-
tions can also be ordered based on the status of the moves in which they were
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proposed. Proposals that are justified might be preferred as dialogue outcome
over disputed proposals.

An option preference relation � is a partial order on a set of options Q ∈ Lo,
such that o � o′ reads that o′ is preferred over o. When one option is strictly
preferred over another it will be written o ≺ o′, while o ≈ o′ means that two
options are equally preferred. Using the status of the moves in which the options
where proposed, a preliminary ordering can be made.

Definition 3.20 Given a dialogue d and the set of proposed options Qd, the
set of justifiable options is denoted Qj = {o|o ∈ Qd where o is justifiable }. The
preliminarily ordered set of proposed options Q�d ⊆ Qd×Qd is defined such that

• for every two options o, o′ ∈ Qj it holds that o ≈ o′ ∈ Q�d ,

• for every o ∈ Qd \Qj and o′ ∈ Qq it holds that o ≺ o′ ∈ Q�d .

Although justifiable options are in principle preferred over disputed options,
justifiable options should not always directly be selected as winner. The pref-
erences as moved by the agents using prefer and prefer-equal moves should be
taken into account as well.

Definition 3.21 Given a dialogue d and the set of proposed options Qd, every
agent a ∈ A has a personally ordered set of proposed options Q�a ⊆ Qd × Qd

such that for any two options o, o′ ∈ Qd

• o ≺ o′ ∈ Q�a if there is a move m ∈ d where content(m) = prefer(o, o′) and
agent(player(m)) = A,

• o ≈ o′ ∈ Q�a if there is a movem ∈ d where content(m) = prefer-equal(oj , oi)
and agent(player(m)) = a.

Note that, since the agents are not forced to state their preferences over
all options, this ordering is not necessarily made over the full set of proposed
options. However, the minimal deliberation protocol does force an agent to be
consistent in its preference utterances with relation to the strict ordering of
options.

Example 3.5 In the recurring Example 3.1 both proposed options were jus-
tified, so goToBistro ≈ goToPizzeria ∈ Q�d . Agent a explicitly stated in the dia-
logue that it prefers to go to the bistro, using the prefer(goToBistro, goToPizzeria)
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move, hence, goToBistro ≺ goToPizzeria ∈ Q�a . Agent b explicitly stated to not
prefer going to the pizzeria over the bistro or vice versa, hence goToBistro ≈
goToPizzeria ∈ Q�b .

When the dialogue terminates, the deliberation dialogue outcome should be
selected from the set of options. How this final selection is achieved is totally
dependent on the domain and the purpose of the system. For example, there
may be an agent authority that chooses the winning option, an additional phase
may be introduced in which agents vote on the outcome or a function may be
used to aggregate all (preliminary and agent-specific) preference orderings. In
any case we need to leave open the option for mutual disagreement (McBurney
et al., 2007).

Preference aggregation is extensively studied in the field of social choice
theory (Pini et al., 2008) and is out of the scope of this work on deliberation
dialogues. It is interesting to note, though, that when maximum social welfare
is desirable it may be good to incorporate the notion of our option status in the
winner selection. The valuable information obtained during the deliberation
dialogue can be used with a public calculus. This would decide on the outcome
in a way similar to the use of public semantics and would not need to rely on
agents considering these notions in their voting strategies. For single agents,
this is already studied by Amgoud and Prade (2009). How to make use of this
is left as future research.

In the remainder of this thesis we will use a simple dialogue outcome function
O(d, gd) = o such that o is an arbitrary option o ∈ Qj . In other words, it selects
one of the proposed options that were not disputed.

3.6 Basic fairness and efficiency

A framework for deliberation dialogues serves as a structure for agents to delib-
erate in some multi-agent system. To properly support deliberation it should
not only allow for the playing of moves and picking of some dialogue outcome,
but it is supposed to help the agents in doing so. In that perspective, the frame-
work itself should allow for fair, efficient and effective dialogues. Establishing
how fair, efficient or effective a dialogue is, is certainly not straightforward.
Chapter 7 studies these desirable properties. However, it is already possible
to establish some basic fairness, efficiency and effectiveness properties based on
the dialogue framework itself and the protocol defined therein. McBurney et al.
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(2002) have proposed a set of 13 desiderata for argumentation-based dialogue
frameworks. These are criteria which dialogue frameworks and their protocols
need to adhere to to achieve basic fairness, efficiency and effectiveness. Check-
ing our deliberation framework against these desiderata already gives an insight
into the capability of the framework in supporting multi-agent deliberation. The
13 desiderata are now listed by their reference name and an explanation is given
how the framework of this chapter adheres to the specific desideratum.

1. Stated Dialogue Purpose The protocol is explicitly designed to decide
on a course of action.

2. Diversity of individual purpose Agents are allowed to have personal
goals that possibly conflict with the stated mutual goal.

3. Inclusiveness Many agents can join the deliberation dialogue and no
roles are enforced upon them.

4. Transparency The rules of our framework are fully explained, but it is
up to an implementation to make sure every agents knows these rules and
knows how to play the game.

5. Fairness Every agent has equal rights in the dialogue and the framework
allows for fair winner selection methods. Since an agent may always choose
not to move (any more) at all, it is never forced to adopt or drop some
belief or goal. Turn taking order doesn’t influence evaluation and selection
of options as outcome.

6. Clarity of Argumentation Theory The reply structure and notion of
relevance in our framework are not hidden implicitly in a protocol but
made explicit. Moreover, the structure of arguments is formalised in an
explicitly defined argumentation logic and topic language.

7. Separation of Syntax and Semantics The communication language
is separately defined from the protocol. Also, dialogues in the framework
are independent of the agent specification while their public behaviour
can still be monitored.

8. Rule Consistency We have not studied the rule consistency in detail,
but the protocol will never lead to deadlocks; agents can always skip their
turn or make a new proposal and within a proposal tree there is always a
way to make a new contribution.
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9. Encouragement of Resolution Agents are encouraged to stay focussed
on the dialogue topic through the notion of relevance. If agents still have
something to say, there is always the opportunity to do so.

10. Discouragement of Disruption Disruption is discouraged through the
definition of legal speech acts, which are separated in attacks and replies.
This restricts the available moves, for example agents cannot attack their
own moves. However, it is still possible for aggressive agents to question
everything that is claimed and no agent is compelled to accept any claim.

11. Enablement of Self-Transformation Agents are allowed to adjust
their beliefs or goals depending on the arguments that are moved and
preferences that are expressed. Moreover, they are allowed to drop pro-
posals and to retract or concede claims.

12. System Simplicity Simplicity of the system is hard to prove or dis-
prove. However, it is highly modular; communication and topic languages
are separated and various alternative protocol rules may be adopted or
dropped. The winner function is left unspecified, but this may range from
a dictator agent to a social welfare-based function.

13. Computational Simplicity This will be further studied in Chapter 8.

Following the desiderata, the presented dialogue framework is compatible
with some basic requirements for a deliberation system. However, the dialogue
framework is only one part of a full deliberation system, as it models merely the
structure of the dialogues and how these dialogues can be evaluated. To test
argumentation in the deliberation system, actual deliberation situations need
to be supplied, as well as agents that can play these.
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Chapter 4

Scenario generation

In the past chapter, deliberation was considered as a type of dialogue. The
proposed model allows agents to put forward and discuss proposals, so as to
mutually deliberate which action to pursue. This chapter will look at the source
of proposals, of arguments that are moved and the reasons for agents to play
them, represented by knowledge about options that can be proposed, beliefs
about the world and personal and shared goals. This knowledge, available at
the start of the dialogue, is contained in a scenario.

Scenarios form a vital part in testing the role of argumentation in delibera-
tion dialogues. The knowledge associated with a scenario is all that the agents
have to reason over and deliberate with. Therefore, the scenario has a major
influence on the course of the dialogue and as an extension on the results of
an experiment with argumentation-based deliberation dialogues. As a result, a
proper analysis of deliberation scenarios is required before the benefits of argu-
mentation can be experimentally tested in Chapter 8 onwards. In particular, a
way is required to generate the scenarios, so agents have meaningful knowledge
to deliberate with.

Generating scenarios starts with a proper analysis of the structure of knowl-
edge behind a deliberation situation. Section 4.1 investigates the characteristics
of deliberation dialogues. Based on that analysis, a structured and meaningful
method to generate deliberation scenarios is introduced. Through the concept
of roles and the idea of rule chaining, in Section 4.2, scenarios are generated,
through which rules, beliefs, goals and options are allocated to agents in Section
4.3. The resulting scenarios should reflect the characteristics of real world de-
liberation issues, in order to be useful for experiments with realistic deliberating
agent strategies.
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4.1 Characteristics of deliberation

The source of knowledge behind a deliberation dialogue is rooted in the meta-
goal of deliberation as dialogical construct. As discussed in the dialogue ty-
pology in Section 2.2.2, deliberation has the dialogical goal to mutually reach
a decision on a course of action. Arguably, a formal dialogue model cannot
intrinsically have a goal, as it is merely a structure that serves the participants.
However, the deliberation dialogue does have a goal from the multi-agent system
perspective. Indeed, the model introduced in the previous chapter presupposed
that the agents agreed on pursuing mutual agreement in a proactive manner.
The dialogue goal of reaching agreement is therefore encoded in the agents
themselves as the mutual goal to which their proposals should adhere.

The mutual goal is not the only thing that agents share in a deliberation
dialogue. Typically the agents share a common body of knowledge as well, in-
cluding world beliefs and possibilities for action. As argued by Walton (2007)
as well as McBurney et al. (2007), goals, beliefs and knowledge of actions is
dispersed among the agents in both an overlapping, complementary and con-
tradictory way. In fact, the origins of knowledge in deliberation issues can be
split even further, namely in knowledge from the agent system, from the role
of an agent and personal knowledge. A method to generate realistic delibera-
tion issues will thus have to provide knowledge from all three of these sources.
Consider an agent with a role as engineer in a car company. The company goal
to make profit is augmented with a goal to produce a reliable car from its role,
while a personal goal might be to want to respect the environment. The role will
also come with unique world beliefs, such as how an engine works, and possible
actions that other agents might not know of, since they have other roles.

While knowledge is dispersed over dialogue participants, the possible actions,
goals and beliefs that a single participant has are typically quite coherent. That
is, an agent does not have random knowledge about options or unrelated in-
ference rules. Rather, there is a coherence between an agent’s goals and the
options that it knows about. The marketing analyst agent’s goal to make profit
is linked to beliefs that support this goal, possibly even tied to a specific ac-
tion. For example, it knowns that producing a small luxury car results in high
margins, which promotes the goal to make profit.

Although an agent’s knowledge has a clear cohesion, this does not mean
that the agent has complete knowledge. In fact, it is often the case that small
but essential bits of knowledge are missing. For instance, though the market
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analysis agent knows about small luxury cars having potential for profit, it
may miss the link between those small cars also being environmentally friendly.
This illustrates that agent will have omissions in their knowledge regarding the
complete deliberation issue. A scenario generation process has to reflect this
aspect.

In conclusion, to generate deliberation scenarios in a structured way, the
following characteristics need to be respected:

• Shared deliberation goal

• Unequal roles between agents

• Both shared and personal goals

• Dispersion of knowledge

• Incomplete information

4.2 Rule chains and conflicts

The main concept behind the generation scenario process is that of rule chaining.
The idea is that agents reason about options by taking into consideration which
goals can be achieved. The promise that executing a certain option realizes an
agent’s goal is connected through a line of practical reasoning. This approach
is similar to that of Walton (2007), who has studied the connection between
practical reasoning and deliberation as dialogical issue from a philosophical
standpoint. This connection was discussed further in Section 2.1.3.

4.2.1 Rule chaining
For the purpose of generating scenarios, lines of reasoning between options and
goals are modelled as chains of defeasible inference rules. Given an option,
inference rules are created so that the conclusion of the final rule is some goal.
The set of created inference rules is called a rule chain, as the rules form a chain
that binds an option to some goal.

Definition 4.1 Given a goal g, an option o, a set of beliefs S = {p1, . . . , pn}
and a chain length l, a rule chain is a set of rules CS

g,o such that

• if l = 1 then CS
g,o = {o %=⇒ g}
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• if l > 1 then CS
g,o = {o %1=⇒ p1, . . . , pi

%i=⇒ pj , . . . , pn
%l=⇒ g} where n = l−1

A chain starts with a rule that has an option as antecedent and ends with a
rule that has a goal as consequence. The consequence to all but the last rule,
if there are more, is an atom from a set of beliefs and this atom in turn is the
antecedent for the follow-up rule. When the length of a chain is one, then the
only possible rule that can be created is by linking the option and goal directly,
that is, o %=⇒ g. For longer chains, different intermediate atoms are used using
the beliefs in S. For readability, the set of beliefs on the basis of a chain will
below be omitted in the notation if there is no danger of confusion, for example
Cg,o.

Example 4.1 Consider an option o and two goals g1 and g2. Various rule
chains can be constructed that link the option to one of the two goals. Given a
rule length l = 3 and belief sets S1, S2, S3 ⊂ {p1, p2, p3, p4, p5, p6}, possible rule
chains include

CS1
o,g1

= {o %1=⇒ p3, p3
%2=⇒ p2, p2

%3=⇒ g1}

CS2
o,g2

= {o %4=⇒ p5, p5
%5=⇒ p1, p1

%6=⇒ g2}

CS3
o,g2

= {o %4=⇒ p5, p5
%7=⇒ p2, p2

%8=⇒ g2}

Given an ASPIC− argumentation system AS, as introduced in Chapter 2, with
Rd = CS1

o,g1
∪CS2

o,g2
∪CS3

o,g2
and knowledge base K = {o}, arguments that can be

constructed include

o
A′′ = %1p3
A′ = %2p2
A = %3g1

o
B′′ = %4p5
B′ = %5p1
B = %6g2

o
C ′′ = %4p5
C ′ = %7p2
C = %8g2

o
D′′ = %4p5
D′ = %7p2
D = %3g1

Arguments A, B and C are directly related to the three rule chains that were
used as set of defeasible rules. On the other hand, the rules can give rise to
different arguments as well, that still connect an option to some goal. This is
shown by argument D, which exploits rules from CS1

o,g1
and CS3

o,g2
to construct

an argument for g1.
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The rules that are constructed to create chains might seem simplistic. Only
one antecedent per rule is used, and that is never negated. However, these
chains are already sufficiently complex to end up with interesting scenarios.
This will be shown by means of a software experiment in Chapter 5.

4.2.2 Conflict generation

Rule chains provide a way to generate coherent sets of rules that tie an option to
some goal. Intuitively, an agent can use these sets to draw conclusions on being
able to reach a goal, given that some action will be performed. In contrast,
an agent might know why the execution of an action might not lead to the
realization of a goal. That information is said to conflict with the rule chain.

Conflicts are caused by negating a rule in a chain or negating an atom that
appears in a rule. The reason for this is that an argument with such a negation
as conclusion would attack an argument constructed using the rule chain.

Example 4.2 For example, consider again the example rule chain CS1
o,g1

=
{o %1=⇒ p3, p3

%2=⇒ p2, p2
%3=⇒ g1}, with which potentially an argument can be

constructed such that

o
A′′ = %1p3
A′ = %2p2
A = %3g1

To attack this argument A, a counterargument B is needed that under-
cuts one of the rule applications, undermines a premise or rebuts a (sub-
)conclusion. That is, the counterargument B should have conclusion conc(B) =
¬o, conc(B) = ¬%1, conc(B) = ¬%2, conc(B) = ¬%3, conc(B) = ¬p3, conc(B) =
¬p2 or conc(B) = ¬g1. The structure of such a counterargument can be any-
thing from a trivial atomic argument to a complex compound argument with
various premises and rule applications. Two example counterarguments to A
are compound argument B and atomic argument C such that

p5
B′′ = %4p3
B′ = %5p6
B = %6¬%1

C = ¬%1
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Note that while C merely requires a fact ¬%1 in the knowledge base for an
agent to construct this argument, for argument B an agent needs to know about
a fact p5 as well as rules %4, %5 and %6 to draw conclusion ¬%1.

To allow agents to construct arguments with relevant negated conclusions,
they will need appropriate knowledge in the form of beliefs and rules. This is
realized through the concept of possible conflicts. Every rule in a rule chain
has a set of associated conflicts, which are subsequently used to assign relevant
knowledge to construct arguments with negated conclusions. Intuitively, the
possible conflicts are those atoms that need to be negated for a possible conflict
to arise.

Definition 4.2 A rule chain Co,g, linking some goal g and option o, has a set
of possible conflicts C̄o,g, being the smallest possible set containing for every
rule p %=⇒ q ∈ Co,g

• an atom ¬%

• an atom ¬p if p ∈ Lb

• an atom ¬q if q ∈ Lb

Specifically not part of a set of possible conflicts are the negated option
and goal for which a chain was generated. The negation of an option does not
translate into an intuitive conflict. It states that a proposal for action is not
the case, such as in ¬goToBistro. Although this is a legal statement, this direct
negation without evidential backup is not part of a typical deliberation issue
and is therefore omitted from the set of conflicts. Similarly, negated goals are
omitted as well. Negated goals, such as ¬enjoyDinner, without factual backup,
are not useful in deliberation dialogues. This would state that there is no such
goal. In case of the mutual deliberation goal, which every agent will have, the
goal is always present. Alternatively, it is equally not useful to play the negation
of some agent’s personal goal, as there is no ultimate truth status to a goal. In
this thesis, agents will not argue with their personal goals and negating them
is therefore not useful.

Note that the atoms in a set of possible conflicts define merely which atoms
would possibly provide a way to counter attack an argument associated with
a rule chain. It is not yet defined how agents are assigned appropriate knowl-
edge to be capable of constructing arguments with these possible conflicts as
conclusion. Two methods to do so will be explained in Section 4.3.3.
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4.3 Knowledge allocation

A model for the generation of deliberation scenarios is now introduced. It uses
the notion of rule chaining to construct scenarios that reflect the characteristics
of deliberation dialogues as studied above. Specifically, scenario generation is
the assignment of rules, beliefs, goals and options to agents in a structured way.

4.3.1 Context
Generation of scenarios happens in a specific context. Most importantly, the
context determines the language domain of the deliberation scenario. Agents
do not have a random knowledge of formulas from the topic language. Instead,
the domain is restricted to a specific set of rules, beliefs, goals and options. It
is from this restricted domain that knowledge will be further allocated to roles
and, subsequently, to agents. Although knowledge is dispersed amongst agents,
the restricted domain ensures a level of cohesion that is important in ending up
with interesting dialogues.

The context also contains the mutual deliberation goal. That goal, as typical
in deliberation, is shared amongst all the agents. It is used in the structured
generation of rule chains and will be allocated directly to the agents, to ensure
that they aspire to contribute in a constructive manner to the deliberation
process.

Definition 4.3 Given the deliberation topic language Lt = Lb ∪ Lo ∪ Lg of
Definition 2.15, a scenario generation context is a tuple SK = 〈RSK, BSK, GSK,
OSK, gd, C, C̄〉 where

• RSK is the set of all possible defeasible rules in an ASPIC− framework
given logical language L,

• BSK ⊆ Lb is a seed set of beliefs,

• GSK ⊆ Lg is a seed set of goals,

• OSK ⊆ Lo is a seed set of options,

• gd is a mutual deliberation goal, such that gd ∈ Lg,

• C is a chaining function C : Pow(Lg)×Pow(Lb)×Lo −→ Pow(R) mapping
a set of goals G, a set of beliefs B and an option o to a specific rule chain
CS

g,o such that g ∈ G and S ⊆ B,

67
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• C̄ is a conflict chaining function ~C : Pow(Lb)×Lb −→ Pow(R) mapping a
set of beliefs B and a belief c to a specific rule chain ~CS

p,c such that p ∈ B,
S ⊆ B and p < S.

The unique chaining and unique conflict chaining functions are used to con-
struct unique rule chains on the basis of a set of beliefs, goals and options. Their
use is further explained below, where rules and beliefs are allocated to roles.

4.3.2 Goal and option allocation

In typical deliberation situations, agents have knowledge from both the role that
they play as well as personal knowledge. This is formalized using an explicit set
of roles, from which agents are later assigned one. Roles are modelled as simple
structures that represent some feature or duty that is part of a multi-agent
system, an approach frequently advocated, such as by Wooldridge et al. (2000).
Associated with a role are a set of defeasible rules, a set of beliefs, a set of goals
and a set of options. Beliefs and rules will be generated using rule chaining, but
first the goals and options are assigned from the scenario generation context.

Definition 4.4 Given a scenario generation context SK = 〈RSK, BSK, GSK,
OSK, gd, C, C̄〉, the set of roles R is defined such that every role r ∈ R is a tuple
r = 〈Rr, Br, Gr, Or〉, such that

• Rr ⊆ RSK is a set of defeasible rules

• Br ⊆ BSK is a set of beliefs

• Gr ⊆ GSK is a set of goals

• Or ⊆ OSK is a set of options

Goals and options allocated to a role are taken directly from the context
seed sets. Rules and beliefs, on the other hand, are allocated in a structural
fashion as defined below.

Example 4.3 Consider an example scenario with three agents, which are as-
signed one of two roles. Goals and options are taken from the knowledge avail-
able in the scenario generation context.
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A a1, a2, a3
R r1, r2
BSK p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12
GSK g1, g2, g3, g4, g5
OSK o1, o2, o3
Gr1 g1, gd

Gr2 g3, g4
Or1 o1, o2
Or2 o2, o3

For the purpose of generating deliberation scenarios, agents are abstract
entities that hold knowledge in the form of rules, beliefs, goals and options.
The basic idea is that agents are assigned a role and inherit the role’s options
and goals. If agents share roles, knowledge will be shared amongst them as a
result. On top of this, the agents are assigned several personal goals, called
non-role originating goals. This further underlines the dispersion of knowledge
between agents, even amongst those sharing a role.

Definition 4.5 Given scenario generation context SK = 〈RSK, BSK, GSK,
OSK, gd〉 and the set of roles R, the set of agents A is defined such that every
agent a ∈ A is a tuple a = 〈r,Ra, Ba, Ga, Oa〉, such that

• r ∈ R

• Ra ⊆ RSK

• Ba ⊆ Br

• Oa = Or

• Gr̄
a ⊆ GSK \Gr

• Ga = Gr ∪Gr̄
a ∪ {gd}

The rule and beliefs are, as with roles, allocated in a structural fashion, as
will be explained below. Options are inherited directly from the role, as are
the role’s goals Gr, which are therefore also called the role-originating goals.
Additionally, there is a set of non-role originating goals Gr̄

a, which are not
inherited from the role of the agent. Finally, the mutual goal gd is always
assigned to an agent.
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4. Scenario generation

4.3.3 Belief allocation

The final step in the generation process is the allocation of rules and beliefs to
roles and subsequently to agents. Rule and belief allocation to a role is done by
generating rule chains for each of the known options to some of the role’s goals.
The construction of such rule chains is done by the context’s unique chaining
function C. Recall that this function constructs a rule chain on the basis of a
set of goals, from which one will be picked, a set of beliefs and a specific option.
Note that the function does not yet make concrete which goal is selected from
the input set of goals or which beliefs from the input set are used to construct
the rule chain. A unique chaining function implementation that fully specifies
the chain construction behaviour is given in the next chapter.

Chains can now be constructed to form the role’s rule knowledge. For each of
the options allocated to a role, a chain is generated to one of the role’s personal
goals. Additionally, a rule chain is constructed for every option to the mutual
deliberation goal gd. The rules of these two chains form the set of so called
role-option rules.

Definition 4.6 Given a scenario generation context with mutual goal gd, every
pair of a role r ∈ R and an option o ∈ Or is associated with, on the basis of
Co,g = C(Gr, BSK, o) and Co,gd

= C({gd}, BSK, o), a set of role-option rules

Ro
r = Co,g ∪ Co,gd

Not every option in the context is assigned to a role. While for options
assigned to a role the chain is allocated, for options not assigned to a role
the role will be allocated possible conflicts. As described above, conflicts are
used to introduce the ability for agents to construct counterarguments. The
set of possible conflicts associated with a certain rule chain contains negated
atoms. For an agent to construct arguments with one of the negated atoms
as conclusion, it needs to be allocated appropriate knowledge. Two methods
are used in this thesis to provide this knowledge. First, a trivial method is
introduced that allocates the various possible conflict atoms directly as facts.
Second, a rule-chain-based method is provided, which allocates facts and rules
by constructing chains with a negated atom as consequence.

The simplest way to allocate appropriate knowledge for possible conflicts is
by directly assigning the negated atoms as facts. This might seem simplistic
at first, but it does already allow for scenarios where practical arguments, as
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constructed with rule chains, can be attacked by a direct counterargument. An
example will be given at the end of this chapter, while Chapter 5 experimentally
evaluates how effective this type of allocation of possible conflicts is.

Definition 4.7 Every pair of a role r ∈ R and an option o ∈ OSK \ Or is,
on the basis of the set of possible conflicts C̄o,g associated with rule chain
Co,g = C(Gr, BSK, o), assigned a set of direct role-option beliefs

Bō
r = C̄o,g

The alternative to direct allocation of the possible conflicts as facts is to
instead generate a rule chain for every possible conflict. In contrast with the rule
chains used above, which start with an option and end with a goal, the negated
atom representing a possible conflict is used as a rule chain’s consequence, while
a normal belief is used as starting point for that chain.

Definition 4.8 Given a possible conflict c ∈ C̄o,g associated with a rule chain
Co,g, a set of beliefs S, a starting belief p ∈ S and a chain length l, a conflict
chain is a set of rules ~Cp,c such that

• if l = 1 then ~Cp,c = {p %=⇒ c}

• if l > 1 then ~Cp,c = {p %1=⇒ p1, . . . , pi
%i=⇒ pj , . . . , pn

%l=⇒ c} where n = l−1
and {p1, . . . , pn} = S

Note that the possible conflict c used in this definition is a negated atom and
that starting belief p is a normal belief taken from the seed set of beliefs in the
scenario generation context. Construction of conflict chains is achieved through
the above defined conflict chaining function ~C, which maps a set of beliefs and
a conflict to a unique conflict rule chain. A conflict chain is assigned to those
options that were not assigned to the role.

Definition 4.9 Every triple of a role r ∈ R, an option o ∈ OSK \ Or and a
conflict c ∈ C̄o,g associated with rule chain Co,g = C(Gr, BSK, o) is, on the basis
of conflict chain ~Cp,c = ~C(BSK, c), assigned a set of chained role-option-conflict
rules and beliefs

R~o,c
r = ~Cp,c B~o,c

r = {p}
such that the set of chained role-option rules and beliefs are defined

R~o
r =

⋃
c∈C̄o,g

R~o,c
r B~o

r =
⋃

c∈C̄o,g

B~o,c
r
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In conclusion, roles have direct (rules) or indirect (beliefs) knowledge about
options. For every option allocated to a role, a set of defeasible rules is as-
signed by generating rule chains for the mutual goal as well as a personal goal.
For every option not allocated to a role, two approaches are given to allocate
knowledge relevant to the possible conflict associated with the rule chain for an
option. In case the direct assignment method is used, negated facts are allo-
cated to the agent. With the chained assignment method, a conflict chain of
defeasible rules is constructed for every possible conflict associated with the rule
chain for the option. Hence, roles are always assigned some relevant knowledge
for an option, which helps to ensure knowledge cohesion in the scenario.

Example 4.4 Consider again the example scenario of 4.3. Role-option rules
and beliefs are constructed for every of the role’s options by providing either
the two rule chains (for gd and an arbitrary other goal g) or a set of beliefs and
rules associated with possible conflicts. Every rule chain has length 3, that is,
three defeasible rules per chain are used.

r1

Ro1
r1

o1
%1=⇒ p5, p5

%2=⇒ p2, p2
%3=⇒ g2,

o1
%4=⇒ p6, p6

%5=⇒ p4, p4
%6=⇒ gd

Ro2
r1

o2
%7=⇒ p5, p5

%2=⇒ p2, p2
%8=⇒ g1,

o2
%9=⇒ p9, p9

%10==⇒ p1, p1
%11==⇒ gd

Bō3
r1

¬%17,¬p3

R ~o3
r1

p9
%23==⇒ p12, p12

%24==⇒ p7, p7
%25==⇒ ¬%17,

p12
%26==⇒ p1, p1

%27==⇒ p11, p11
%12==⇒ ¬p3

B ~o3
r1

p9, p12
r2

Ro2
r2

o2
%9=⇒ p9, p9

%12==⇒ p8, p8
%13==⇒ g4,

o2
%14==⇒ p1, p1

%15==⇒ p9, p9
%16==⇒ gd

Ro3
r2

o3
%17==⇒ p7, p7

%18==⇒ p3, p3
%19==⇒ g4,

o3
%17==⇒ p7, p7

%21==⇒ p8, p8
%22==⇒ gd

Bō1
r2

¬p2,¬%3

R ~o1
r2

p12
%26==⇒ p7, p7

%21==⇒ p8, p8
%27==⇒ ¬p2,

p10
%28==⇒ p6, p6

%5=⇒ p4, p4
%29==⇒ ¬%3

B ~o1
r2

p12, p10

72



4.3. Knowledge allocation

Finally, the agents’ rules and beliefs can be allocated. As with the goal allo-
cation, rules and beliefs are dispersed among both roles and individual agents.
This is modelled by the allocation of role and non-role-originating rules and
beliefs to the agents.

Whether it be role or non-role-originating rules and beliefs, agents do not
have complete knowledge. In fact, agents will miss, sometimes essential, knowl-
edge, which is a characteristic of deliberation scenarios. This is true for both
rules that come from constructed rule chains and knowledge regarding possible
conflicts. For this reason, the number of rules and beliefs that are allocated to
the agent is defined as a subset of the role’s rules and beliefs.

Definition 4.10 An agent a = 〈r,Ra, Ba, Ga, Oa〉 with some role r is assigned
a set of role-originating rules and beliefs

Rr
a ⊆

⋃
o∈OSK

Ro
r Br

a ⊆
⋃

o∈OSK

Bō
r

if the direct possible conflict allocation is used, or

Rr
a ⊆

⋃
o∈OSK

Ro
r ∪R~o

r Br
a ⊆

⋃
o∈OSK

B~o
r

if the chained conflict allocation method is used.

The body of non-role-originating rules and beliefs, which is unique for a
single agent, is typically incomplete as well. For every option assigned to the
agent, a new chain is generated with defeasible rules and associated set of pos-
sible conflicts. A subset of those rules and beliefs is then selected.

Definition 4.11 An agent a = 〈r,Ra, Ba, Ga, Oa〉 is for every option o ∈ Oa,
on the basis of Co,g = C(Ga, BSK, o), assigned a set of non-role-originating rules

Rr̄
a ⊆

⋃
o∈Oa

Co,g

For those options that were not assigned to the agent, the agent is instead
given knowledge in the form of some negated fact or a conflict chain, in the
same fashion as belief allocation to roles. As many negated facts or conflict
chains are used here as there are options not allocated to the agent.
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Definition 4.12 Every pair of an agent a = 〈r,Ra, Ba, Ga, Oa〉 and an option
o ∈ OK \Oa is, on the basis of a set of beliefs

S ⊆ BSK such that |S| = |OSK \Oa|

assigned a set of non-role-originating option rules and beliefs

Rr̄
a = ∅ Br̄

a ⊆
⋃
p∈S

¬p

if the direct possible conflict allocation is used, or, for every p ∈ S and associated
conflict chain ~Cq,¬p = ~C(BSK,¬p)

Rr̄,p
a = ~Cq,¬p Br̄,p

a = q

such that
Rr̄

a ⊆
⋃
p∈S

Rr̄,p
a Br̄

a ⊆
⋃
p∈S

Br̄,p
a

if the chained conflict allocation method is used.

As a result, the agents are allocated rules and beliefs from their role, but
are also assigned personal knowledge, as is characteristic in deliberation situ-
ations. Note that the personal knowledge might be incomplete, as subsets of
the generated rule chains and possible conflicts are used. To wrap up, the role
and non-role-originating rules and beliefs are combined to complete the agents’
knowledge allocation.

Definition 4.13 An agent a = 〈r,Ra, Ba, Ga, Oa〉 is assigned a set of agent
rules and a set of agent beliefs

Ra = Rr
a ∪Rr̄

a Ba = Br
a ∪Br̄

a

Example 4.5 Consider again the example scenario between three agents. Agents
a1 and a2 have role r1, while agent a3 has role r2. Both personal and role knowl-
edge is assigned. Recall that an agent is assigned its role’s goals, personal goals
and the mutual goal gd. Options are directly inherited from the role. Both role
and non-role-originating rules and beliefs are allocated, using the direct possi-
ble conflict assignment method. Single the agents have incomplete knowledge,
some rules from the chains are missing, as well as some possible conflicts.
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a1
Oa1 o1, o2
Ga1 gd, g1, g2, g4

Ra1 Rr1
a1

o1
%1=⇒ p5, p5

%2=⇒ p2, p2
%3=⇒ g2,

o1
%4=⇒ p6, p6

%5=⇒ p4, p4
%6=⇒ gd,

o2
%7=⇒ p5, p5

%2=⇒ p2,
o2

%9=⇒ p9, p9
%10==⇒ p1,

Rr̄1
a1

o1
%23==⇒ p10, p8

%25==⇒ g3

o2
%26==⇒ p3, p5

%27==⇒ g2,
Ba1 Br1

a1
¬%17,¬p3

Br̄1
a1

¬%27
a2

Oa2 o1, o2
Ga2 gd, g1, g2, g3

Ra2 Rr1
a2

p5
%2=⇒ p2, p2

%3=⇒ g2,
o1

%4=⇒ p6, p6
%5=⇒ p4, p4

%6=⇒ gd,
o2

%7=⇒ p5, p5
%2=⇒ p2, p2

%8=⇒ g1,
o2

%9=⇒ p9, p9
%10==⇒ p1, p1

%11==⇒ gd,
Rr̄1

a2
o1

%28==⇒ p8, p8
%29==⇒ p4, p4

%30==⇒ g1,
p10

%32==⇒ p8, p8
%33==⇒ g3

Ba2 Br1
a2

¬%17,¬p3
Br̄1

a2
¬p7

a3
Oa3 o2, o3
Ga3 gd, g3, g4, g2

Ra3 Rr1
a3

o2
%9=⇒ p9, p9

%12==⇒ p8, p8
%13==⇒ g4,

o2
%14==⇒ p1, p1

%15==⇒ p9, p9
%16==⇒ gd,

o3
%17==⇒ p7, p7

%18==⇒ p3,
o3

%17==⇒ p7, p7
%21==⇒ p8, p8

%22==⇒ gd,
Rr̄2

a3
p8

%13==⇒ g4,
o3

%17==⇒ p7, p7
%34==⇒ p5, p5

%27==⇒ g2
Ba3 Br2

a3
¬p2, ¬%3

Br̄2
a3

¬p4
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4.4 Normative validation

A framework has been presented for the structured generation of scenarios for
multi-agent deliberation dialogues. It was grounded in the characteristics of
typical deliberation situations. Walton (2007) has taken the deliberation char-
acteristics and combined them with the argument scheme for practical reasoning
and the critical questions attached to that scheme. This culminates in a set of
10 requirements that form the normative validation for systems supporting de-
liberation. In particular, it defines requirements for the way agents should (be
able to) reason over actions and on what information they should ground this
reasoning. Hence, it is interesting to evaluate the scenario generation framework
presented in this chapter against Walton’s normative requirements for deliber-
ation systems. The 10 requirements are listed here by their reference name and
a short explanation is given how each requirement is adhered to.

1. Dialogues start with a governing question The dialogue purpose of
deciding on a course of action is already fixed in the deliberation dialogue
framework; scenarios contain a fixed set of options.

2. Agents have shared and personal goals Agents are assigned both the
mutual goal gd as well as role and personal goals.

3. Agents have shared and personal values Values are not modelled
explicitly in this thesis, but are assumed to underlie goals.

4. Agents share beliefs Agents are assigned shared facts and rules through
their role; on top of this agents have personal beliefs.

5. Beliefs are updated as the dialogue proceeds This is part of the
agent’s strategy, not the scenario generation model.

6. Expect agreement as well as disagreement This is explicitly mod-
elled through the concept of possible conflicts and it is shown how conflicts
result in arguments and counterarguments.

7. Proposals are based in goals, actions and practical reasoning Rule
chaining is used to provide agents with the connection between goals and
options (actions), by which they can construct practical arguments.
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8. Proposals are supported through (1), (2) and (3) The generated
scenarios provide agents with knowledge to combine their goals and beliefs
into support for some option.

9. Criticizing proposals by (1) questioning premises, (2) undermin-
ing premises, (3) undercutting practical arguments, (4) rebut-
ting practical arguments and (5) proposing alternatives How pro-
posals are criticized is not restricted, but rather supported by allowing the
combination of practical and epistemic arguments in the ASPIC− frame-
work. Agents are assigned appropriate knowledge to construct arguments
that criticize proposals in all five ways.

10. Agents will stop advocating defeated proposals Since the strategy
ultimately specifies agent behaviour, such as when to stop advocating a
proposal, this property cannot be verified yet.

With adherence to Walton’s requirements, or at least those that are relevant
to this chapter, the scenario generation method satisfies some basic requirements
for deliberation systems. However, it does not yet show to what degree the
scenarios are indeed interesting to deliberate on. To understand to what extent
the scenarios have the potential to result in interesting deliberation dialogues,
a study is required into the practical use of the knowledge that is allocated to
agents.
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Chapter 5

Evaluating scenario
interestingness

The previous chapter introduced a model for the structured generation of de-
liberation scenarios. It was shown how scenarios can be generated that reflect
the typical characteristics of deliberation situations. One reason for the genera-
tion of scenarios was to understand the structure behind deliberation scenarios,
which was validated against a set of requirements for deliberation systems. How-
ever, as was already hinted on, the main purpose for deliberation scenarios is
to support experimentation with deliberating agents that use argumentation.
This chapter shows how scenarios can support arguing agents in a deliberation
dialogue. An experiment was performed to show how to maximize the potential
use of the generation model.

5.1 Constructing arguments from allocated knowledge

To understand the importance of scenarios for experimentation with argumen-
tation-based deliberation, it is useful to first explore how a scenario can be used
by an agent to make, attack and defend proposals. The model presented in the
last chapter generates scenarios by assigning goals, options, rules and beliefs
to agents. The knowledge is allocated in such a way that agents can construct
arguments for various options, as well as give counterarguments.

Looking back at the deliberation dialogue model of Chapter 3, agents were
assumed to have a strategy for playing dialogue moves, but few constraints have
been set on their strategies. Agents can only play legal attacking or surrendering
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moves, as specified by the communication language, and the agents need to
adhere to the deliberation protocol that is in place. One important rule in the
minimal deliberation protocol of Definition 3.14 is that arguments supporting
a proposal should show how the mutual goal is achieved. This rule is in place
to ensure that agents show why the supported option is indeed beneficial in
relation to the mutual goal. Hence, for any discussion in a deliberation dialogue
to take place regarding the proposal of an option, agents need to be capable of
constructing arguments for the mutual goal, with the specific proposed option
as conclusion.

Example 5.1 Consider again the knowledge that was assigned to agent a1 in
the generated scenario of Example 4.5.

a1
Oa1 o1, o2
Ga1 gd, g1, g2, g4

Ra1 Rr1
a1

o1
%1=⇒ p5, p5

%2=⇒ p2, p2
%3=⇒ g2,

o1
%4=⇒ p6, p6

%5=⇒ p4, p4
%6=⇒ gd,

o2
%7=⇒ p5, p5

%2=⇒ p2,
o2

%9=⇒ p9, p9
%10==⇒ p1,

Rr̄1
a1

o1
%23==⇒ p10, p8

%25==⇒ g3

o2
%26==⇒ p3, p5

%27==⇒ g2,
Ba1 Br1

a1
¬%17,¬p3,

Br̄1
a1

¬%27

With this knowledge, the agent will need to construct an argument that has
the mutual goal gd as conclusion, if it wants to provide support to any of its
options o1 or o2. The agent uses a personal ASPIC− argumentation system
with Rd = Ra1 and K = Ba1 ∪ {o1, o2} to construct:

o1
A′′ = %4p6
A′ = %5p4
A = %6gd

This is the only argument that can be constructed for gd by the agent. Hence,
it has the possibility to support o1 but not o2.
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5.1. Constructing arguments from allocated knowledge

In a similar fashion, an agent could try to construct an argument on the
basis of its other goals. It is not the deliberation protocol which enforces this,
but rather it can help the agent in finding which options that it knows about
are actually beneficial for itself. How personal goals can lead to an option being
supported or attacked further depends on the agent’s strategy, as explained in
Chapter 6. Here, it will be shown how an agent can find options that comply
with its goals.

Example 5.2 With the ASPIC− argumentation system with Rd = Ra1 and
K = Ba1 ∪ {o1, o2} of Example 5.1, the agent can construct:

o1
B′′ = %1p5
B′ = %2p2
B = %3g2

o2
C ′′ = %7p5
C ′ = %2p2
C = %3g2

o1
D′′ = %1p5
D = %27g2

o2
E′′ = %7p5
E = %27g2

The agent can construct four arguments that support his personal goals, of
which two are from option o1 and two from o2. Hence, both options seem to
lead to the realization of some of the agent’s personal goals, specifically goal
g2. Intuitively, these arguments are reasons to propose and support both the
allocated options.

If agent a1 were to play arguments for options o1 and o2 in a dialogue, other
agents will analyse the desirability of the advocated options. How agents can
perform this analysis is made concrete in the chapter on strategies, but quite
possibly agents see reasons to attack one of the arguments that agent a1 played.
Attack is possible, according to the communication language of the deliberation
dialogue model, by playing an argue move with an argument that defeats the
attacked argument.

Example 5.3 Consider again agent a1’s argument in Example 5.1 from option
o1 to the mutual goal gd.

o1
A′′ = %4p6
A′ = %5p4
A = %6gd
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The other two agents in this example scenario will try to counter this argument
using their knowledge. Importantly, it are the negated rules and beliefs that
were assigned through conflict generation that allow agents to form counterar-
guments. Agent a3, for example, was assigned various relevant negated beliefs
in its knowledge base.

a3
Oa3 o2, o3
Ga3 gd, g3, g4, g2

Ra3 Rr1
a3

o2
%9=⇒ p9, p9

%12==⇒ p8, p8
%13==⇒ g4,

o2
%14==⇒ p1, p1

%15==⇒ p9, p9
%16==⇒ gd,

o3
%17==⇒ p7, p7

%18==⇒ p3,
o3

%17==⇒ p7, p7
%21==⇒ p8, p8

%22==⇒ gd,
Rr̄2

a3
p8

%13==⇒ g4,
o3

%17==⇒ p7, p7
%34==⇒ p5, p5

%27==⇒ g2
Ba3 Br2

a3
¬p2, ¬%3

Br̄2
a3

¬p4

The agent can construct one counterargument with its ASPIC− argumentation
system with Rd = Ra3 and K = Ba3 that defeats A.

Ā = ¬p4

Argument Ā rebuts argument a on A′, as their conclusions are contrary. Al-
though Ā is a very trivial argument, it is still a valid counterargument to A and
shows how the direct possible conflict allocation during scenario generation can
already lead to the possibility for counterarguments. In a similar fashion, the
agent can construct counter arguments to agent a1’s arguments B and C.

B̄ = ¬p2 D̄ = ¬%3

C̄ = ¬p2 Ē = ¬%3

B̄ rebuts B on B′, just as C̄ rebuts C on C ′, both using the belief that p2 is
not true. Arguments D̄ and Ē undercut B and C respectively, both on %3, by
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5.1. Constructing arguments from allocated knowledge

stating that the application of rule is not applicable. Arguments D and E can
not be countered by agent a3.

If the scenario is generated using the chained conflict allocation method,
the knowledge bases of the agents can lead to more complex counterarguments.
Instead of the knowledge from Example 4.5, consider an alternative knowledge
allocation for agent a3.

a3
Oa3 o2, o3
Ga3 gd, g3, g4, g2

Ra3 Rr1
a3

o2
%9=⇒ p9, p9

%12==⇒ p8, p8
%13==⇒ g4,

o2
%14==⇒ p1, p1

%15==⇒ p9, p9
%16==⇒ gd,

o3
%17==⇒ p7, p7

%18==⇒ p3,
o3

%17==⇒ p7, p7
%21==⇒ p8, p8

%22==⇒ gd,
p12

%26==⇒ p7, p7
%21==⇒ p8, p8

%27==⇒ ¬p2,
p10

%28==⇒ p6, p6
%5=⇒ p4, p4

%29==⇒ ¬%3,
Rr̄2

a3
p8

%13==⇒ g4,
o3

%17==⇒ p7, p7
%34==⇒ p5, p5

%27==⇒ g2

p1
%5=⇒ p10, p10

%30==⇒ p11, p11
%31==⇒ ¬p4

Ba3 Br2
a3

p12, p10
Br̄2

a3
∅

Instead of the direct assignment of negated beliefs for p2, %3 and p4, rule
chains were generated instead. Note that the conflict chains for p2, %3 were
already showed in Example 4.4. A new chain is generated connecting p6 to ¬p4,
forming the non-role rules and beliefs, but note that not all rules and beliefs
necessarily end up in the agent’s knowledge, according to Definition 4.12, and
indeed the belief p1 is missing from the agent’s knowledge base.

As above, the agent can now try to construct a counterargument for agent
a1’s argument A that connected option o1 and mutual goal gd. Again the
sub-conclusion p4 can be attacked, but this time a more complex argument is
required.

p10
~A′ = %30p11
~A = %31¬p4
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5. Evaluating scenario interestingness

Even though the belief p1 is missing in the agent’s knowledge, it already believes
p10 is the case and hence it does not need to apply rule %5 to still be able
to construct a counterargument. Agent a1’s arguments B and C, connecting
options to the agent’s private goals, can also be attacked. Just like above, those
counterarguments attack B and C on either the subconclusion p2 or the rule
application of %3.

p12
~B′′ = %26p7
~B′ = %21p8
~B = %27¬p2

p10
~D′′ = %28p6
~D′ = %5p4
~D = %29¬%3

p12
~C ′′ = %26p7
~C ′ = %21p8
~C = %27¬p2

p10
~E′′ = %28p6
~E′ = %5p4
~E = %29¬%3

In conclusion, agents will try to construct arguments relating to the options
they know about and concerning the mutual and their personal goals. Moreover,
other agents are typically assigned relevant knowledge, either direct or using
conflict chains, to construct counterarguments, which defeat the arguments that
sported some option.

5.2 Interesting scenarios

Scenarios are meant to support experimentation with argumentation in deliber-
ation dialogues. For that reason, scenarios need to be evaluated to what degree
they underpin such experimentation. In other words, scenarios need to be inter-
esting with respect to the potential they have for further use in the experiments
that can demonstrate the benefits of argumentation in multi-agent deliberation
dialogues.

What makes a deliberation scenario interesting? An experiment that tests
the benefits of argumentation will compare a situation in which agents do not
argue with a situation in which agent do argue. For a clear distinction be-
tween these, the dialogues in which agents argue will ideally have discussions
on multiple options, which means arguments supporting the options as well as
counterarguments to those. These types of dialogues are better representatives
for the arguing agents’ situation, for the comparison against non-arguing agents,
than a dialogue with little discussion going on. Hence, a dialogue is interest-
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ing if agents have arguments to back up the proposal of various options and,
distinctively, if agents can defeat those arguments with their counterarguments.

As explained above, an agent can find support for a proposal through the
construction of arguments from its knowledge base. Foremost, the agent will
need an argument that shows how an option leads to the mutual dialogue goal,
as this is required by the dialogue model for arguments supporting a proposal.
For its personal gain, the agent will also want to construct arguments to its
other personal goals. Although this type of reasoning is tied to a strategy,
likely agents will propose and defend those options by which it believes its
personal goals will be achieved. Conversely, dialogues will spur discussions
with counterarguments only if agents are assigned knowledge by the scenario
generation mechanism to construct relevant counterarguments. Consequently,
how interesting a generated scenario is can be tested by measuring if, and to
what extent, agents have appropriate knowledge.

5.3 Experiment

While the scenario generation method is grounded in the characteristics of delib-
eration dialogues, the practical interestingness of generated scenarios still needs
to be evaluated. For this, an experiment was designed and performed that
tests to what degree a scenario is interesting through four different metrics.
An implementation of the scenario generation method of Chapter 4 is used to
generate and test many scenarios. A statistical analysis is applied to the exper-
imental data to identify how the scenario generation method can be configured
to have the most potential for interesting dialogues, with many arguments and
counterarguments.

5.3.1 Parameters of scenario generation

The model for the generation of deliberation scenarios presented in the last
chapter provides a model that is not yet fully defined. The structure of rule
changes and subsequent assignment of knowledge to agents is modelled, but in
several places it is left open how large the sets of rules, beliefs, options and goals
are. For example, the length of (conflict) rule chains, the number of role and
non-role rules and beliefs or the number of roles and agents in the scenario.

The places where the scenario generation method needs to be made concrete
will now be identified. For each of these places a decision on the size of some
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5. Evaluating scenario interestingness

set needs to be made. Since the sizes of these sets determine directly how the
resulting generated dialogue will look like, they act as input parameters for the
generation method. The settings for all input parameters together is called a
configuration.

The context for the generation of deliberation scenarios is specified in Defi-
nition 4.3. The components of a context still need to be made concrete, except
RSK which contains all rules that can be specified in an ASPIC− framework
with topic language Lt and fixed mutual goal gd. The |S| notation is used to
mean the number of elements in a set S.

Definition 5.1 Given a scenario generation context SK = 〈RSK, BSK, GSK,
OSK, gd, C, C̄〉 and set sizes nBSK , nGSK , nOSK and l:

• |BSK| = nBSK

• |GSK| = nGSK

• |OSK| = nOSK

• C(G,B, o) = {o %1=⇒ p1, . . . , pi
%i=⇒ pj , . . . , pn

%l=⇒ g} such that g ∈ G is
picked arbitrarily and |C(G,B, o)| = l

• C̄ = {p %1=⇒ p1, . . . , pi
%i=⇒ pj , . . . , pn

%l=⇒ c} such that g ∈ G is picked
arbitrarily and |C̄(G,B, o)| = l

The variables nBSK , nGSK and nOSK control the number of atoms that will
further be used in the generation process. Moreover, all the rule chains that will
be generated, to connect options and goals as well as conflict chains, have length
l. Normal and conflict chains have the same length for reasons of simplicity,
but a future experiment might drop this constraint.

Definitions 4.4 and 4.5 define the structure of roles and agents, including
fixed sets of goals and options that are allocated to them.

Definition 5.2 Given a scenario generation context SK, the sets of roles R
and agents A and the set sizes nR, nA, nOr

and nGr
:

• |R| = nR

• for each r ∈ R such that r = 〈Rr, Br, Gr, Or〉:

– |Or| = nOr
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Table 5.1: Input parameters used in the scenario generation process

min example max
nBSK The beliefs seed set size 10 12 100
nGSK The goals seed set size 3 5 15
nOSK The options seed set size 3 3 15
nA The number of agents 1 3 6
nR The number of roles 1 2 6
l The length of rule chains 1 3 9
nOr

Role r’s options set size 2 2 5
nGr Role r’s goals set size 2 2 5
nGr̄

a
Agent a’s non-role originating goals set size 0 1 2

nBr
a

Agent a’s role-originating beliefs set size 1 12 15
nBr̄

a
Agent a’s non-role originating beliefs set size 0 5 20

– |Gr| = nGr

• |A| = nA

• for each agent a ∈ agents such that a = 〈r,Ra, Ba, Ga, Oa〉 and Ga =
Gr ∪Gr̄

a ∪ {gd}:

– |Gr̄
a| = nGr̄

a

Finally, rules and beliefs are allocated to roles and thereafter to agents using
role and non-role originating rules and beliefs. Agents can end up with incom-
plete knowledge by only assigning part of the role’s rules and beliefs, specified
in Definition 4.10, and assigning only part of the generated non-role originating
rules and beliefs, specified in 4.11.

Definition 5.3 Given an agent a = 〈r,Ra, Ba, Ga, Oa〉 with some role r and
set sizes nBr

a
and nBr̄

a
:

• |Rr
a|+ |Br

a| = nBr
a

• |Rr̄
a|+ |Br̄

a| = nBr̄
a
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A maximum of nBr
a
role-originating rules and beliefs will be allocated to

agents, as well as a maximum of nBr̄
a
non-role originating rules and beliefs.

In total, there are 11 input parameters that influence the scenario generation
process, which are listed in Table 5.1. The table also shows a minimum and
maximum reasonable setting, their uses explained below, and the setting used
in the running example generated scenario.

5.3.2 Scenario metrics
Scenarios will be measured by how interesting they are. As explained above,
interesting scenarios are those that will spur an interesting dialogue through
the supporting of proposals and playing of counterarguments. At the core of
this idea is that an agent can propose options if it can construct an argument
from it, with the mutual goal as conclusion. The other interesting case is when
agents can construct arguments from an option to one of its personal goals. An
option for which an argument can be constructed will be called defensible for
the agent.

Definition 5.4 Given an agent a = 〈r,Ra, Ba, Ga, Oa〉, some option o ∈ Oa,
some goal g ∈ Ga and an ASPIC− argumentation framework AS with Rd = Ra

and K = Ba ∪ {o}, o is an a-g-defensible option if an argument A can be
constructed such that conc(A) = g and o ∈ prem(A).

The first metric for interesting dialogues indicates to which extent agents
can construct arguments from their options to the mutual goal. The defensi-
ble options are counted with arguments concluding the mutual dialogue goal.
Hence, the metric is a ratio of options that can potentially be proposed in the
dialogue versus all options available to the agents.

Definition 5.5 A generated scenario with a set of agents A and mutual goal
gd has an option potential ratio

jgd

A =
|
⋃

a∈A{o|o ∈ Oa where o is an a-g-defensible option such that g = gd}|
nA × nOr

Example 5.4 Consider again the example scenario originally presented in
Example 4.5. As already showed in Example 5.1, agent a1 can construct one
argument that connects an option to the mutual dialogue goal, that is, an argu-
ment from option o1. Since agent a1 cannot construct an argument connecting
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o2 and gd, this option is not defensible and for this agent the ratio would be
1
2 . Agents a2 and a3 can also construct arguments that connect an allocated
option to the mutual goal.

a1

o1
A′′ = %4p6
A′ = %5p4
A = %6gd

a2

o1
A′′ = %4p6
A′ = %5p4
A = %6gd

o2
F ′′ = %9p9
F ′ = %10p1
F = %11gd

o1
G′′ = %28p8
G′ = %29p4
G = %6gd

a3

o2
L′′ = %14p1
L′ = %15p9
L = %16gd

o3
M ′′ = %17p7
M ′ = %21p8
M = %22gd

o2
N ′′ = %9p9
N = %16gd

o2
O′′ = %9p9
O′ = %12p8
O = %22gd

The actual number of arguments connecting one option to the mutual goal is
not important, as only one is enough to be able to propose the option in the
dialogue. Given this example scenario the option potential ratio jgd

A = 5
6 .

The second metric for interesting scenarios defines to which extent agents
can form arguments that couple their allocated options to some of their personal
goals. The number of options for which such an argument can be constructed is
compared to all available options for the agents to get the option defensibility
ratio of a scenario.

Definition 5.6 A generated scenario with a set of agents A has an option
defensibility ratio

jA =
|
⋃

a∈A{o|o ∈ Oa where o is an a-g-defensible option such that g ∈ Ga}|
nA × nOr

Example 5.5 As shown above in Example 5.2, agent a1 can construct argu-
ments from both its options o1 and o2, connecting them its personal goals.
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Agents a2 and a3 can also construct such arguments.

a1

o1
B′′ = %1p5
B′ = %2p2
B = %3g2

o2
C ′′ = %7p5
C ′ = %2p2
C = %3g2

o1
D′′ = %1p5
D = %27g2

o2
E′′ = %7p5
E = %27g2

a2

o1
H ′′ = %28p8
H ′ = %29p4
H = %30g1

o2
I ′′ = %7p5
I ′ = %2p2
I = %8g1

o1
J ′ = %28p8
J = %33g3

o2
K ′′ = %7p5
K ′ = %2p2
K = %3g2

a3

o2
P ′′ = %9p9
P ′ = %12p8
P = %13g4

o3
Q′′ = %17p7
Q′ = %34p5
Q = %27g2

o3
R′′ = %17p7
R′ = %21p8
R = %13g4

Each of the agents can construct arguments for all of their options, hence the
option defensibility ratio jA = 6

6 .

Interesting dialogues do not only allow agents to construct support for op-
tions, but also spur discussion through the playing of counterarguments. As
demonstrated above, agents use the rules and beliefs that were directly as-
signed or generated through conflict chains to construct arguments that defeat
another agent’s argument.

Definition 5.7 An agent a’s a-g-defensible option o, as supported by argu-
ment A with conc(A) = g, is also an a-a′-countered option if some agent
a′ = 〈r′, Ra′ , Ba′ , Ga′ , Oa′〉, where a , a′, can construct a counterargument B
that defeats A, given an ASPIC− argumentation framework AS with Rd = Ra′

and K = Ba′

The metrics related to potential for counterarguments are split for the two
types of defensible options used above, that is, options with arguments support-
ing the mutual goal and options with arguments supporting some personal goal.
Looking at their potential in a dialogue, the arguments supporting the mutual
goal are used to support proposals and counterarguments are subsequently used,
by other agents, to attack this support.
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Definition 5.8 A generated scenario with a set of agents A and mutual goal
gd has a countered option potential ratio

j̄gd

A =
|
⋃

a∈A{o|o ∈ Oa where o is an a-a′-countered option}|
|
⋃

a∈A{o|o ∈ Oa where o is an a-g-defensible option where g = gd}|

The example will, for brevity sake, from here only use show the direct con-
flict assignment method for scenario generation, consistent with the knowledge
allocation of Example 4.5. Of course, the metrics work exactly the same way
when the conflict chaining method is used instead.

Example 5.6 Example 5.3 showed how agent a1’s argument A could be at-
tacked by agent a3, since agent a3 can use its assigned rules and beliefs to
construct an argument Ā.

Ā = ¬p4

On the other hand, agent a2 can not construct an argument that defeats A. For
the two options that were allocated to agent a1 the countered option potential
would be 1

2 , but the ratio is, of course, defined over all agents. To complete the
picture, agent a2 and a3’s options are considered as well.

a1 o1 a3 Ā = ¬p4

a2 o1 a3 Ā = ¬p4 a3 Ḡ = ¬p4

o2

a3 o2

o3 a1 M̄ = ¬%17 a2 M̄ ′ = ¬%17 a2 M̄ ′′ = ¬p7

Considering the defensible options for each agent, three times another agent
was able to construct a counter argument, hence the countered option potential
ratio j̄gd

A = 3
5 .

In contrast to the countered option potential ratio, the countered option
defensibility ratio considers those arguments that agents have for their personal
goals. This type of argument can be used by an agent in its strategy to see
how an option leads to the realisation of personal goals. The countered option
defensibility ratio determines to what extent these arguments can be countered
by other agents, if they were to be played in a dialogue setting.
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Definition 5.9 A generated scenario with a set of agents A has a countered
option defensibility ratio

j̄A =
|
⋃

a∈A{o|o ∈ Oa where o is an a-a′-countered option}|
|
⋃

a∈A{o|o ∈ Oa where o is an a-g-defensible option}|

Example 5.7 Example 5.3 showed how agent a1’s four arguments B and C

could be defeated by agent a3’s B̄ and D̄ as well as C̄ and Ē respectively. For
the countered option defensibility ratio, every agent’s assigned options will be
considered. The names of the counterarguments correspond to the arguments
that they defeat.

a1 o1 a3 B̄ = ¬p2 a3 B̄′ = ¬%3

o2 a3 C̄ = ¬p2 a3 C̄ ′ = ¬%3

a2 o1 a3 H̄ = ¬p4

o2 a3 Ī = ¬p2 a3 K̄ = ¬p2 a3 K̄ ′ = ¬%3

a3 o2

o3 a1 Q̄ = ¬%17 a1 R̄ = ¬%17 a1 Q̄′′′ = ¬%27

a2 Q̄′ = ¬%17 a2 R̄′ = ¬%17 a2 Q̄′′ = ¬p7 a2 R̄′′ = ¬p7

Only for agent a3’s option o2 there was no attack possible, but all other combi-
nations allowed for at least one counter argument. Hence, the countered option
defensibility ratio j̄A = 5

6 .

None of the four metrics explain individually how interesting a dialogue is.
Rather, the four metrics combined form the indicator of interestingness of a
single generated scenario.

Definition 5.10 A generated scenario with a set of agents A has a measure of
interestingness, which is a 4-tuple 〈jgd

A , jA, j̄
gd

A , j̄A〉.

The most interesting scenario is that with the highest values for all of the
four metrics. Note that a claim about relative interestingness between two
scenarios can only be made if all metrics are strictly higher or strictly lower at
the same time.
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Definition 5.11 A scenario with set of agents A is a more interesting scenario
than a scenario with set of agents A′ iff jgd

A > jgd

A′ , jA > jA′ , j̄gd

A > j̄gd

A′ and
j̄A > j̄A′ . A scenario with set of agents A is a less interesting scenario than a
scenario with set of agents A′ iff jgd

A < jgd

A′ , jA < jA′ , j̄gd

A < j̄gd

A′ and j̄A < j̄A′ .

5.3.3 Implementation details

The scenario generation method was implemented as a Java application, con-
sisting of a scenario generator, to be reused in Chapter 8, and a scenario ex-
periment, that implements the metrics for interesting dialogues. It was coupled
with the ASPIC Java Components of South and Vreeswijk (2009) to construct
and evaluate argumentation systems. Several noteworthy decisions were made
during the development.

Every agent in a scenario is assigned a single role, from the set of all roles.
In the software implementation, roles are assigned in sequence. With a set of
two roles R = {r1, r2}, agent a1 is assigned role r1, agent a2 is assigned role r2,
agent a3 is assigned r1 again, agent a4 is assigned r2, a5 is assigned r1, etc. In
contrast, the assignment of subsets of goals, options, rules and beliefs is done by
randomly picking elements from the superset, with a uniform distribution. For
example, when a seed set of goals GSK = {g1, g2, g3, g4} is used to assign goals
to a role, the resulting set (where nGr = 3) might be {g2, g2, g4}, {g4, g2, g1},
etc.

A second point on the implementation of knowledge assignment is that of
loop prevention. Rule chains are generated by randomly selecting elements
from the seed set of beliefs BSK and producing (uniquely numbered) rules that
connect these. The resulting rules are allocated to roles and subsequently to
agents. The resulting set of rules assigned to a single agent can quite possibly
be combined in several ways beyond the original purpose in a single chain. This
is actually a strength of the generation method and several examples have been
shown before where agents can take advantage of this. However, this also means
that loops of rules might end up being assigned to an agent. For example, if some
agent a was assigned {p8

%12==⇒ p9, p9
%12==⇒ p8, p8

%13==⇒ g4} ∈ Ra, the construction
of an argument with conc(g4) causes a loop. If the ASPIC Java Components
needs to construct such an argument, it will end up in an infinite loop. To work
around this problem the generated scenarios are tested to make sure that no
rule loops are present in the agent’s knowledge.

The parameters of Table 5.1 are used as input in the scenario generation
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process. However, not every configuration of input parameters is valid. For
instance, there should be at least one agent, that is, nA >= 1. More subtly,
several combinations of parameters are invalid. For example, with a number
of role-originating rules and beliefs nBr

a
= 50 there should at least be 50 rules

and beliefs available to be assigned. This might not be the case when, for
instance, l or nOr

are too small. Consequently, not every configuration of
scenario settings can be tested and such configurations are thus not considered
during the experiment.

5.3.4 Method

An experiment was performed to measure the interestingness of scenarios that
are generated with the method from Chapter 4. The Java implementation
was used to generate a total of N = 2000 valid scenarios. Input parameters
for the generation process were taken randomly, with a reasonable lower and
upper bound and with a uniform distribution. The minimum and maximum
bounds for each input parameter is listed in Table 5.1. Invalid configurations
of parameters were ignored. Both the direct and chained conflict assignment
methods were used, with an even distribution, constituting an extra parameter
in the experiment.

Each generated scenario was tested using the four metrics defined in Sec-
tion 5.3.2. The results were logged to a data file and analysed using the sta-
tistical software package R. Generating 2000 valid scenarios, with the above
given parameter bounds and both conflict assignment methods, costed about
half an hour, where checking for rule loops was the most time-consuming. The
experimental data were studied to answer four questions:

1. Is the generation method capable of producing interesting dialogues?

2. How do individual input parameters influence the scenario interestingness?

3. Which input parameters are most influential in making a scenario inter-
esting?

4. What is the optimal input parameter configuration, producing the most
interesting scenarios?
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Table 5.2: Means and standard deviations of all scenario interestingness metrics

jgd

A jA j̄gd

A j̄A
Direct conflicts 0.11 (0.21) 0.22 (0.30) 0.72 (0.40) 0.72 (0.39)
Conflict chaining 0.07 (0.19) 0.16 (0.28) 0.32 (0.37) 0.29 (0.36)
Combined 0.10 (0.20) 0.19 (0.29) 0.60 (0.43) 0.57 (0.43)

5.4 Results

Four questions were posed to understand the scenario generation process and
its capability to product interesting dialogues. These questions will now be
answered using the experimental data, before providing a conclusion regarding
the use of the generation process.

5.4.1 Capability of producing interesting dialogues

Analysis of the experimental data showed that the generated scenarios had a
strongly varied degree of interestingness, for each of the four metrics and for
both conflict assignment methods. For example, many scenarios did not give
rise to any defensible or potential option at all, while many scenarios were
generated that resulted in high values for all four of the metrics.

The means and standard deviations for each of the scenario interestingness
metrics are listed in Table 5.2. The values are given for both methods of conflict
assignment, as well as the combined values. Both methods allow for agents
to construct arguments justifying their options from both the mutual (jgd

A =
0.11 and 0.08) and goals (j̄gd

A = 0.73 and 0.33) and other agents are often
capable of constructing counterarguments to defensible options. Most strikingly
is the difference between direct and chained conflict assignment, in that direct
assignment of conflicts results in a much higher chance of other agents being
able to construct counterarguments.

5.4.2 Individual parameter influence

It is interesting to see what the influence of a single parameter is on the scenario
generation process in terms of scenario interestingness. This can confirm or
contradict the intuition behind the various parameters. Not every combination
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Figure 5.1: Average countered option potential and defensibility, j̄gd

A and j̄A,
(with standard errors of the mean) for both conflict assignment methods

of parameter and metric will be discussed, as there are 48 of such combinations.
Still, it is good to look in detail at four specific cases: the conflict assignment
method, the number of assigned role-originating beliefs, the number of agents
and the rule chain length. As explained below, they are especially interesting
or indicative.

As we have already seen in the mean scenario interestingness for countered
option potential and countered option defensibility, there is a clear difference
between direct or chained conflict assignment. This warrants a closer look. Fig-
ure 5.1 shows the countered option potential and countered option defensibility
ratios for both conflict assignment methods.

Considering the scenario generation model, there are several effects of the in-
put parameters that one expects to show in the experimental data. Specifically,
increasing or decreasing some input parameter is expected to have an incremen-
tal or decremental effect on the various metrics. To see if indeed these effects
are reflected in the experimental data, two parameters are depicted, namely the
number of assigned beliefs and the rule chain length.

Intuitively it is expected that if agents are assigned a larger number of rules
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Figure 5.2: Average (countered) option defensibility ratios, jA and j̄A, (with
standard errors of the mean) for nBr

a
∈ {5, . . . , 100}

and beliefs, specified by nBr
a
, that agents would more likely be able to construct

arguments and counterarguments. The experiment showed that this was indeed
the case, for arguments and counterarguments to the mutual goal and personal
goals. Figure 5.2 shows that the option potential and countered option potential
ratios are higher when agents are assigned more rules and beliefs.

Not every input parameter has a positive linear influence on the various
metrics. The chain length l causes rule chains to be longer, in which case chains
are more likely to broken, that is, that agents miss rules from the chains due
to the restricted knowledge allocation to agents. This intuitive effect is indeed
found in the experimental data, as shown in Figure 5.4.2.

The final parameter that is worth portraying is one that is expected to reveal
meaningless parameter configurations. One of such parameters is the number of
agents. The countered option potential and defensibility ratios are metrics that
count counterarguments. Since counterarguments will only be constructed by
other agents, the data should show that with only one agent in the game there
should be no potential for counterarguments at all and therefore the countered
option potential and defensibility should be 0. Figure 5.4.2 shows that the
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Figure 5.3: Average countered option potential j̄gd

A and average option defensi-
bility jA (with standard errors of the mean) for nA and l
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experimental results indeed show this behaviour.

5.4.3 Most influential parameters

It was established that individual parameters can influence the metrics in dif-
ferent ways, that is, positively, negatively or not at all. These effects are easily
seen when an individual parameter is plotted for a certain interestingness met-
ric. However, this does not provide a full insight into the dynamics between
the parameters. For example, it might be that the size of the goals seed set has
no effect unless the number of assigned goals to agents is high (or low). It is
important to capture the interplay of parameters as so to find the parameters
that are most influential to the various metrics. For a deliberating agents exper-
iment that uses the scenario generation process, it is interesting to understand
which parameters to adjust in order to create more or less interesting scenarios,
for example when measuring the performance of deliberation strategies with a
high (or low) availability of defensible options.

To assess what the optimal configuration of input parameter settings is,
a multiple linear regression analysis was performed on the experimental data.
This creates a model of the data and, in a stepwise fashion, determines the
influence that parameters have on one of the interestingness metrics. Note that
multiple linear regression analysis assumes the effect of parameters to have a lin-
ear effect, but a look at the individual parameters showed that this assumption
can be safely made and no transformations were necessary.

Out of the 12 input parameters 8 have a statistically significant influence
on the option potential ratio jgd

A , with F (12, 1987) = 77.77, P < 0.001 and
adjusted R-squared 0.32. This means that 32% of the variance in jgd

A can be
explained from the 8 input parameters. For jA 8 parameters have a statisti-
cally significant influence, with F (12, 1987) = 157.5, P < 0.001 and adjusted
R-squared 0.48, that is, explaining 48% of the variation in jA. Table 5.3 shows
the input parameters with significant influence ordered by the amount of in-
fluence (standard beta coefficient), t and P values (probability values, where
non-significant parameters are labelled NP).

Out of the 12 input parameters 8 have a statistically significant influence on
the option potential ratio j̄gd

A , with F (12, 719) = 51.46, P < 0.001 and adjusted
R-squared 0.45. This means that 45% of the variance in j̄gd

A can be explained
from the 8 input parameters. For j̄A 9 parameters have a statistically signif-
icant influence, with F (12, 1068) = 92.96, P < 0.001 and adjusted R-squared
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5. Evaluating scenario interestingness

Table 5.3: Input parameters and their influence on jgd

A and jgd

A

option potential jgd

A option defensibility jA
β t P ideal β t P ideal

Conflicts < 0.001 D < 0.001 C
nA 0.04 1.89 NS 10 0.03 1.70 NS 7
nR −0.09 −4.57 < 0.001 6 −0.09 −5.60 < 0.001 8
nBSK −0.10 −5.17 < 0.001 20 −0.11 −6.50 < 0.001 40
nOSK −0.08 −4.24 < 0.001 30 −0.11 −6.78 < 0.001 34
nGSK −0.04 −1.99 < 0.05 14 −0.01 −0.43 NS 12
nOr

−0.04 −2.02 < 0.05 8 −0.13 −7.82 < 0.001 8
nGr

0.00 0.14 NS 4 0.02 1.02 NS 5
l −0.48 −24.63 < 0.001 2 −0.61 −35.86 < 0.001 2
nGr̄

a
−0.01 0.39 NS 6 −0.00 −0.03 NS 2

nBr
a

0.28 14.24 < 0.001 65 0.17 10.24 < 0.001 70
nBr̄

a
−0.01 −0.28 NS 0 0.32 18.67 < 0.001 45

Table 5.4: Input parameters and their influence on jA and j̄A

countered option potential j̄gd

A countered option defensibility j̄A
β t P ideal β t P ideal

Conflicts < 0.001 D < 0.001 D
nA 0.40 14.52 < 0.001 10 0.43 19.60 < 0.001 10
nR −0.02 −0.55 NS 10 −0.01 −0.36 NS 10
nBSK −0.13 −4.38 < 0.001 60 −0.12 −5.19 < 0.001 60
nOSK 0.06 1.94 NS 40 0.10 4.47 < 0.001 40
nGSK 0.01 0.48 NS 14 −0.04 −1.67 NS 14
nOr −0.20 −6.94 < 0.001 3 −0.14 −6.05 < 0.001 3
nGr

−0.01 −0.46 NS 3 −0.02 −0.78 NS 3
l −0.07 −2.09 < 0.05 3 −0.10 −4.03 < 0.001 3
nGr̄

a
0.07 2.36 < 0.05 8 0.06 2.48 < 0.05 8

nBr
a

0.34 11.20 < 0.001 80 0.30 12.91 < 0.001 80
nBr̄

a
0.06 2.16 < 0.05 15 0.08 3.14 < 0.01 15
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0.51, that is, explaining 51% of the variation in j̄A. Table 5.3 shows the input
parameters with significant influence ordered by the amount of influence (stan-
dard beta coefficient), t and P values (probability values, where non-significant
parameters are labelled NP). Note that the conflict method has a clear statis-
tically significant influence on the countered option potential and defensibility
ratios, reflecting Figure 5.1.

Different interesting results can be derived from the statistical analysis.
Foremost, when experimenting with the deliberation system and scenario gen-
eration process of this paper the length of rule chains l is the first parameter
that should be varied when a differing degree of option potential jgd

A or defen-
sibility jA is to be tested. The bigger l is, the smaller jA will be, in line with
the intuition that it increases belief disparity. On the other hand, if focus of
an experiment is on countered option potential and defensibility the number
of agents nA should be varied instead, since that will have most influence on
j̄gd

A and j̄A. Strikingly, yet not totally surprisingly, the number of non-role
originating beliefs nBr̄

a
has a particularly high influence on option defensibility

and countered option defensibility, but not so much on the option potential
and countered option potential. Find both arguments and counterarguments
for personal rules and beliefs is influenced more by knowledge not shared with
other agents in the role than is the case for constructing arguments for the
mutual goal.

5.4.4 Combined parameter influence

The most influential parameters have been established, but not yet the config-
uration of parameters that gives the most interesting dialogues, that is, that
maximizes jgd

A , jA, j̄
gd

A , j̄
gd

A and j̄A. This will often be the starting point when
experimenting since that configuration offers the agents scenarios with most
chances of proposing options and countering those. The parameter configuration
that maximizes one of the metrics will be called the optimal configuration and
can be found using the linear regression model used above. As the model pre-
dicts precisely (with P < 0.001) the outcome of each metric, it can also be used
to find the expected maximal value. A sufficiently large data set (N = 2000)
is produced for all four metrics through extrapolation of the regression model,
that is, predicating the outcome for every possible scenario configuration. In
this new data set the optimal values are found for each input parameter, which
are shown in Tables 5.3 and 5.4.
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5. Evaluating scenario interestingness

Fortunately, the optimal values for each of the four metrics are largely com-
patible. There do not seem to be parameters that have inverse optimal settings
for one metric versus another. An experiment that uses the scenario generation
model can set the parameters without having to make big trade-offs in expected
values for all four metrics. Note that the regression model can find the optimal
setting, while generalizing over all parameters. For example, although for the
option potential it individually was best to have chains of length l = 1, the
regression models shows that the optimal setting is actually l = 2. Chapter 8
utilizes the ideal setting for the running of experiments with deliberation dia-
logues, but for a note on the practical application of the ideal parameter settings
see 8.1.2.

5.5 Employing interesting scenarios

Few examples exist in the literature in which scenarios are generated for multi-
agent systems. Relevant to arguing agents, there are two studies that have to
deal with the generation of scenarios. In both studies the goal is to experi-
ment with agent strategies in negotiation dialogues. Karunatillake et al. (2009)
generate scenarios for agents that negotiate about social influence, actions to
perform and commitments. In their experiment, scenarios are task allocation
problems. Agents are randomly allocated actions (with a certain utility) within
some reasonable bounds which are controllable using parameters in roughly the
same manner as the scenarios generation model of this thesis. Also similar is
how roles are used to assign, in their case, social relationships and commitments
to the agents, although there is no non-role-originating allocation of resources.
The major difference between this thesis and the scenarios of Karunatillake
et al. (2009) is that their scenarios have no allocation of beliefs and defeasible
inference rules. Rather, the agents decide whether to support or attack a pro-
posal based on the direct utility that they assign to options. Since the agents
do not construct structured arguments, they also have no need to generate rules
and beliefs, while, as shown above, this is the most complex part of generating
scenarios.

The second relevant study is that of Pasquier et al. (2010). Their project
also included negotiating agents, but focusses on finding agreement on a division
of scarce resources rather than a set of actions bound to a social context. The
approach in this study is to experimentally find whether providing arguments
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to back up proposals is beneficial with respect to the likelihood of reaching an
agreement. Scenarios, which are called domains in this paper, are generated by
randomly allocating goals, resources and budgets to agents, controlled by vari-
ous parameters. As with the work of Karunatillake et al. (2009), no beliefs and
rules are allocated to agents, because their agent strategies do not construct
structured arguments. Furthermore, neither of these two negotiation-based
based studies provide a handle to find the optimal settings for their param-
eters or study the influence of individual parameters. Rather, they have to run
the agent strategy experiments with all possible parameter configurations avail-
able, within a reasonable bound. Specifically, Pasquier et al. (2010) need to run
168200 negotiation dialogues to test one strategy, while still several parameters
are fixed.

In contrast to these existing studies, this chapter has shown how agents can
be generated that may use structured argumentation to find support for options.
Moreover, it was discussed how an optimal configuration of input parameters
can be established that ensure a maximal interestingness of scenarios possible
with the presented scenario generation model. The model proved capable of
generating scenarios that spur discussion of proposals through arguments and
counterarguments. This provides a solid basis for the experimentation with
different agent deliberation strategies.

Agreeably, the used scenarios are still relatively simple to the sophisticated
and expressive deliberation situations that humans use. It would be interesting
to further develop and improve scenario generation. One suggestion is to allow
for rule chains that use more than one premise per rule and include strict rules.
Such rules would allow for more complex arguments. Another suggestion is to
have various specialized pools of beliefs, instead of the simple single set of beliefs
used now in the context. Example pools are expert knowledge, common sense
knowledge and an internet knowledge base. This change potentially makes the
generated scenarios more realistic.
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Chapter 6

Agent behaviour

With the dialogical model and a way to generate knowledge for agents, all
that is still required for deliberation is a definition of agent behaviour. As
will be shown, behaviour of agents in a deliberation dialogue consists of two
parts: knowledge revision and the deliberation strategy. Knowledge revision is
the process of analysing the ongoing dialogue and updating the personal rules,
beliefs, goals and options accordingly. On the other hand, the deliberation
strategy determines how an agent selects new moves to play in the dialogue.

This chapter introduces a high-level deliberation behaviour model for agents,
based on the decision procedure of making and defending a proposal in a delib-
eration dialogue. Grounded in the typical design of BDI agents, several basic
heuristics are discussed for simple yet rational agent behaviour.

6.1 Decision procedure

Deliberation is a complex decision making process, taking into account a dia-
logue situation, personal knowledge, a mutual goal and more, and deciding what
move to make from many possibilities. To understand the structure behind this
process, it is useful to take a look at how humans make strategic decisions in
deliberation dialogues. Walton (2007) has studied the relation between formal
argumentation, practical reasoning, agent theory and human deliberation in
terms of how proposals are made, attacked and defended. He reasons that any
deliberating agent should ground its behaviour in the making and evaluation
of proposals. BDI agents, he argues, are at least partially self-interested and
therefore evaluate how an option is beneficial using practical reasoning, making
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and defending a proposal for those options that seem beneficial.
The behavioural model in this chapter will followWalton’s approach of treat-

ing the game-strategic part of agent behaviour like a decision procedure. First,
the current situation is evaluated by analysing the laid out proposals and their
arguments. Agents can evaluate proposals by considering if the arguments are
indeed valid support to a proposal and establish those points in the dialogue
where it has conflicting beliefs.

Second, from its own knowledge and those alternatives already proposed, it
can decide which options are beneficial to the agent using practical reasoning.
A self-interested BDI agent has personal goals which it tries to satisfy. In
Section 5.1 it was shown how agents construct practical arguments that connect
their personal goals to known options. Such practical arguments give reasons to
propose or defend an option in the dialogue. Conversely, an agent might want
to attack a proposal if it sees no practical benefits.

Third, the minimal protocol for deliberation dialogues, introduced in 3.4,
shows how agents can be enforced to support proposals using practical argu-
ments that connect the mutual goal to the proposed option. A deliberation
strategy should therefore use the evaluation of the current dialogue situation to
find practical arguments for beneficial proposals without proper support or ask
for support for existing proposals that are not beneficial.

There are two elements to deliberation strategies that Walton deliberately
does not go into: revising knowledge and the combination of deliberation with
other dialogue types, especially persuasion. As agents evaluate the dialogue
moves of other agents, they might or might not agree with the statements of
other agents. If an agent is convinced by the arguments of other agents, it
may want to update its own knowledge, a process known as belief revision or
knowledge revision. While being a widely researched topic in agent systems, not
many studies have as of yet considered belief revision in the light of argument-
based dialogues. Paglieri and Castelfranchi (2004) identify several problems
with classic non-argumentative belief revision and show how an argumentation-
based approach can derive logical conclusions even while the underlying data
are inconsistent. An example application is given that uses trust for accepting
or refuting beliefs. Snaith and Reed (2012a) have proposed a specific strategy
for adopting and dropping beliefs. Interestingly, it shows how only an approach
with structured arguments, as opposed to abstract argumentation models, can
display certain benefits of argumentation-based belief revision.

The final relevant aspect of the deliberation decision making process is the
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combination of practical and epistemic reasoning. In Chapter 2 it was shown
how practical arguments can be combined with epistemic ones in the ASPIC−
framework. Agents will therefore consider playing epistemic as well as practical
arguments in the dialogue. Fortunately, the dialogue model of Chapter 3 models
the connection between the two forms of arguments already, by way of allowing
epistemic argue moves to be played that defeat practical arguments through
rebuttal, undermining or undercutting. This way, agents can combine the prac-
tical reasoning about options with epistemic knowledge that was assigned to
them.

To sum up, a deliberation strategy can be seen as a decision process of four
distinct steps:

1. Evaluate new dialogue moves and revise knowledge

2. Determine desirability of known options by considering personal goals

3. Evaluate the status of dialogue moves and identify points of attack

4. Make a move, such as proposing an option or playing an attacking or
defending argument

While this decision process is still abstract, and certainly allows for a great
variety of concrete strategies, it can be used as a template for deliberating
agents, in the form of a knowledge revision approach and a deliberation strategy
model that formalises the decision procedure.

6.2 Knowledge revision

The first part of agent behaviour concerns the revision of personal knowledge,
based on new moves that are made in the dialogue. This step is distinct from the
agent’s deliberation strategy, which models the last three steps in the decision
process as a strategy in a game-theoretic sense. This separation, as well as
the separation of the strategy’s individual steps, has two purposes. First, it
isolates and makes concrete the decisions that an agent has to make. Second,
the isolation of steps allows for a comparison of strategies on individual parts
of the decision process. This is, for example, useful in an experiment with
deliberation strategies. Individual elements of the strategy can be isolated for
experimentation, such as belief revision or attitude assignment.
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Knowledge revision is formalized as a function that relates to a specific
ongoing dialogue as described in Chapter 3 and with agents that are assigned
knowledge as in Chapter 4. New moves in the ongoing dialogue provide new
information and an agent might want to update its internal model accordingly.

Definition 6.1 Given a deliberation dialogue context DK = 〈AS,Lt, Lc,P,
A, gd〉 and an agent a = 〈r,Ra, Ba, Ga, Oa〉 ∈ A, a knowledge revision function
Ba : D×Pow(AR)×Pow(Lb)×Pow(Lg)×Pow(Lo) −→ Pow(AR)×Pow(Lb)×
Pow(Lg) × Pow(Lo) maps dialogue d and the agent a’s rules Ra, beliefs Ba,
goals Ga and options Oa to a revised set of rules R′a, beliefs B′a, goals G′a and
options O′a.

Revising knowledge can be as simple as not changing any rules, beliefs, goals
or options, that is, Ba(d,Ra, Ba, Ga, Oa) = Ra, Ba, Ga, Oa. On the other hand,
the knowledge revision function may incorporate more complex concepts, such
as trust or opponent modelling.

The above mentioned-work of Snaith and Reed (2012a) is one, fairly com-
plex, example of an implementation of the knowledge revision function. The
set of beliefs is updated by adopting or dropping beliefs from it, based on the
notion of minimal change. Options and goals do not exist in their model and
the set of rules is never updated.

6.3 Strategy model

The strategy model involves the last three steps of the deliberation decision
process described above. These steps are modelled as three functions, where
the output of one is used as the input of the next step. A concrete strategy may
implement a step in a very trivial or very complex way. For example, attitude
assignment can simply mark to pursue every known option or it can evaluate
options based on individual goal utility and feasibility predication methods. It
is eventually up to the designer of a concrete strategy to make these decisions.

Every function defined below will assume a deliberation dialogue context
DK = 〈AS,Lt, Lc,P,A, gd〉, an associated ongoing dialogue d and apply to an
agent a = 〈r,Ra, Ba, Ga, Oa〉 ∈ A.
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6.3.1 Attitude assignment

After an agent has potentially updated its knowledge base, it may perform an
analysis on how beneficial the various options are that it knows about. Before
any move can be made, an agent will want to determine which options it should
support, or pursue, and which it should attack. The idea is that an agent assigns
an attitude to each option it knows about.

Definition 6.2 Let H = {build, destroy, indifferent} be the set of all strategy
attitudes. An agent a’s attitude assignment function Ha : D × Lo −→ H maps
a dialogue d and one of the agent’s options o ∈ Oa to a strategy attitude h ∈ H.

The specific implication of assigning one of the attitudes to an option is not
specified, but there is an intuitive meaning to building or destroying an option.
Options which the agent deems beneficial are assigned a build attitude, options
that seem disagreeable are assigned a destroy attitude and an indifferent attitude
is given to those options that the agent considers of no particular interest at
the time or at least requires no action in the form of new moves. An agent will
probably want to assign an attitude to every option it knows about, that is,
the options that were assigned to the agent as well as options that were already
proposed in the dialogue. However, it is up to the actual implementation to
make this design decision.

Below, in Section 6.4.3, a concrete heuristic is proposed that self-interestedly
assigns attitudes using the private goals of an agent. In the literature, the
assignment of attitudes to individual proposals has seen some interest in the
form of layered strategy designs for persuasion dialogues. Amgoud and Maudet
(2002) use build and destroy attitudes (which they refer to as strategies) that
are chosen on the basis of a so-called level of prudence, indicating how reluctant
an agent is to expose its arguments. A local argumentation system is used to
determine the status of propositions. A build attitude is chosen by the agent if
it can, on the basis of its current knowledge, construct an acceptable argument
for the persuasion topic. Instead, if it can construct an acceptable argument for
the contrary, it will choose a destroy attitude. The level of prudence determines
if the argument’s conclusion, the persuasion topic or its contrary, needs to be
sceptically or credulously acceptable. In consequence, the level of prudence is a
parameter that makes the agent more or less strict on the required arguments
for an option.
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Amgoud and Maudet’s attitudes can be modelled as an attitude assignment
function, adjusted for deliberation by considering the individual options as per-
suasion topic.

Example 6.1 Consider some dialogue d and agent a = 〈Ra, Ba, Ga, Oa〉 with
associated local ASPIC− argumentation system AS with set of rules Ra and
knowledge base K = Ba ∪ Ga ∪ Oa. For an Amgoud and Maudet-style atti-
tude assignment with prudence level l it holds that for every option o ∈ Oa,
Ha(d, o) = h such that h = build if o is l-acceptable in AS, h = destroy if ¬o is
l-acceptable in AS or otherwise o = indifferent. Prudence level l requires either
a credulously or sceptically acceptable argument for conc(A).

6.3.2 Attack point identification
After establishing which options it should build or destroy, an agent needs to
identify the points of attack in a dialogue. As explained in Chapter 3, every
proposed option in the dialogue is associated with a proposal tree, with which
the dialogical status of moves is determined. Typically, an agent wants to
influence the status of moves, so that a beneficial proposal is built and one that
is not beneficial is destroyed. Moves that an agent likely wants to attack are
propose moves, since these usually, depending on the protocol, influence directly
which proposed option is selected as dialogue outcome. In any case, an agent
needs to identify the points in the dialogue tree where it can attack.

Definition 6.3 An agent a’s attack point identification function Ia = D ×
Lo −→ Pow(M) maps a dialogue d and an option o ∈ Oa to a set of attack
points N such that for every m ∈ N it holds that m ∈ d.

Example 6.2 Consider the example dialogue of Figure 6.1, originally proposed
in Section 3.2.3. Two agents are deliberating on where to go for dinner. Two
proposals were made and various practical and epistemic arguments were played,
which gave rise to two proposals trees, with both the propose moves being in.
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m
odel

1a : propose(goToBistro) 4b : propose(goToPizzeria)

3b : why-propose(goToBistro)

6a : argue(goToBistro; goToBistro %4=⇒ bestSteak; bestSteak %5=⇒ enjoyDinner |∼ enjoyDinner)

13a : argue(goToBistro; goToBistro %6=⇒ tastyBeer; tastyBeer %7=⇒ enjoyDinner |∼ enjoyDinner)

9b : why(bestSteak)

12a : argue(steak;wagyuCattle; steak,wagyuCattle %3=⇒ wagyuSteak;wagyuSteak %1=⇒ bestSteak |∼ bestSteak)

15b : concede(wagyuCattle) 16b : argue(improperlyHandled; improperlyHandled %2=⇒ ¬%1 |∼ ¬%1)

Figure 6.1: Copy of the proposal trees example dialogue of Figure 3.1
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Say that an agent wants to prevent the option to goToBistro to be selected
as dialogue outcome, that is, Ha(d, goToBistro) = destroy. This can be realized
by flipping the status of the associated propose move to out. The obvious move
to identify as attack point is propose move propose(goToBistro). In addition,
there are more moves that would make the propose(goToBistro) move out, such
as attacking move 13. While an attacking move targeting 16 would not flip the
status of the original propose move, some agent strategies might still want to
include 16 as an attack point. For example, if a dialogue protocol is used that
only requires agents to play at least weakly relevant moves, an attack on 16 is a
legal move, creating a new winning part, which an agent might consider useful.

Existing models for argumentation-based dialogue strategies have generally
not considered attack point identification as a separate step in the strategic
decision process. One reason is that most proposed protocols only allow replies
to the last move, so no attack point has to be chosen. Nevertheless, sometimes
the separation with move generation has been modelled more or less implicitly.
Black and Atkinson (2011) have introduced a strategy for deliberation dialogues
where agents need to decide between different plausible moves. They propose
a solution through opponent modelling. Interestingly, the separation between
gathering possible plausible moves and the actual move selection is similar to
the separation of attack point identification and actual move generation. One
difference is that the deliberation model of Black and Atkinson only allows
for practical arguments, while the model in this thesis combines practical and
epistemic arguments and treats them similarly in the identification of attack
points.

6.3.3 Move generation

The final step in the strategic decision making process is to select the actual
move to play. The assigned attitudes and the identified attack points are used
in this move generation process. The selected move is required to be legal
according to the dialogue protocol that is in place.

Definition 6.4 An agent a’s move generation function Ga = D × Pow(AR)×
Pow(Lb) × Pow(Lg) × Pow(Lo) −→ M maps current dialogue d, rules Ra,
beliefs Ba, goals Ga and options Oa to a single move m such that m ∈ P(d).
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Generating a move to play is not an easy task, even if the attitude towards
individual options is already determined using Ha and attack points have been
identified with Ia. To begin with, if an agent wants to attack an identified attack
point there might be multiple attacking locutions available. Next, aside from
attacking, an agent may want to play surrendering moves, such as conceding
to a claim by another agent to divert the focus of the discussion. Then, with
the type of locution chosen, the actual content still needs to be determined. An
argue move needs to contain an argument that defeats the target, but such an
argument may use rebuttals, underminers and undercutters on various premises
and rules. On top of that, there might be many attack points and a move for
only one of them can be made. Finally, there are other types of moves to
consider, such as propose, inform, prefer and prefer-equal.

Most studies into argumentation dialogue strategies have focused on the
move generation step of the four-step decision process. Often a local argumen-
tation system is used to evaluate a claim or argument in an attack point. For
instance, the strategy presented in Amgoud and Maudet (2002) considers the
last move and, if it is an attack point, chooses an acceptable argument with the
contrary conclusion, if one exists.

Example 6.3 Consider an Amgoud and Maudet-style move generation strat-
egy on the example dialogue d of Figure 6.1 and an agent a withHa(d, goToBistro) =
destroy and Ia(d, goToBistro) = N such that last move m16 ∈ N . Note that
content(m16) = argue(A) where conc(A) = ¬%1 and prem(A) = {improperlyHandled}.
Given a local ASPIC− argumentation systemAS with set of rulesRa and knowl-
edge base K = Ba ∪ Ga ∪ Oa and prudence level l, Ga(d,Ra, Ba, Ga, Oa) = m

where

• target(m) = m16 and content(m) = argue(B) if cf(conc(A)) is l-acceptable
on the grounds of argument B in AS and argue(B) < d, or else,

• target(m) = m16 and content(m) = why(conc(A)) if why(conc(A)) < d, or
else,

• content(m) = skip.

Note that the original strategy from Amgoud and Maudet (2002) only con-
siders the last move in the dialogue as attack point, but it is straightforward to
extend this. Section 6.4.6 will show an algorithm that supports the considera-
tion of all attack points in move selection, among other properties.
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6.4 Basic heuristics

The proposed knowledge revision function and strategy model for deliberating
agents are still merely templates. The four functions that define agent behaviour
still have to be implemented. Some example implementations from the literature
have already been discussed. Several useful alternatives are now introduced,
which will also be used in the experimental evaluation of Chapter 8. This
includes several heuristics that are not yet full implementations of the functions,
but rather help narrow down the choices from the very general agent behaviour
functions.

6.4.1 Simple belief revision

Knowledge revision has been widely studied in the field of agent technology.
Therefore, it might be expected that there is largely an agreement on the ap-
proach of updating beliefs, goals and options. However, this is not the case.
By any means, knowledge revision is a difficult issue and the introduction of
an argumentation-based approach, albeit with lots of potential, only makes it
more delicate. For example, while agent systems commonly use logics that
disallow conflicting beliefs, an argumentation-based approach can comfortably
belief both p and ¬p as an argumentation system proves acceptability through
underlying arguments.

Instead of offering a complex knowledge revision alternative here, this thesis
will primarily adopt a simple revision function. The idea is that an agent never
updates its personal beliefs, with the exception of adopting knowledge of any
proposed option in the dialogue.

Recall definition 3.17 The set of proposed options for a dialogue d is the set
of options Qd = {o|propose(o) ∈ d}.

Definition 6.5 A knowledge revision function for agent a satisfies the minimal
knowledge revision heuristic if Ba(d,Ra, Ba, Ga, Oa) = (R′a, B′a, G′a, O′a) such
that Qd ⊆ O′a.

Having all proposals in the knowledge base is a reasonable heuristic, be-
cause an agent will generally want to consider all options, not just those that it
happened to know about at the start of the dialogue.
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6.4.2 Naive and considerate revision
A more elaborate implementation of knowledge revision Ba function is to adopt
beliefs and rules used in the dialogue into the personal knowledge. As the argue
and inform moves reveal knowledge, the agent can, for example, directly adopt
them. Alternatively, an agent can adopt only those beliefs for which it has no
conflicting knowledge.

Definition 6.6 Let a be an agent with an ASPIC− argumentation framework
AS with Rd = Ra and K = Ba ∪ Oa. Let d = 〈m0, . . . ,mn〉 be a dialogue and
Bmn

⊆ Lb be a set of revealed beliefs by move mn such that:

• Bmn = prem(A) if content(mn) = argue(A),

• Bmn = {p} if content(mn) = inform(p),

• Bmn
= ∅ otherwise.

A knowledge revision function for agent a satisfies the naive revision heuris-
tic if Ba(d,Ra, Ba, Ga, Oa) = (Ra, Ba ∪Bmn

, Ga, Oa ∪Qd).
Let B′mn

be a set of beliefs such that B′mn
= 〈p|p ∈ Bmn

and no argument
A such that conc(A) = ¬p can be constructed on the basis of AS〉. A knowl-
edge revision function for agent a satisfies the considerate revision heuristic if
Ba(d,Ra, Ba, Ga, Oa) = (Ra, Ba ∪B′mn

, Ga, Oa ∪Qd).

The naive variation revises knowledge by adopting any premise used in an
argue move and any belief used in an inform move. The considerate variation
only adopts a belief if it can not construct a counterargument to it. This
alternative is therefore more careful. In any case, from the moment the agent
incorporates a belief, it can use the belief in its reasoning process and play it in
a dialogue move. It is expected that this style of knowledge revision influences
the course of a dialogue, as agents can learn that certain (possibly negated)
beliefs hold, making it possible to play arguments that it could otherwise not
have constructed. An experiment will have to show whether the various metrics
for deliberation will indeed show differences.

6.4.3 Goal-based attitudes
Agents in this thesis are partially self-interested, something which is imple-
mented in BDI agents by means of their personal goals. For this reason it
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makes sense to use personal goals in the assignment of attitudes. More pre-
cisely, attitudes can be assigned based on the potential that an option has to
satisfy personal goals. To start with, each goal that an agent has is supposed
to have a certain utility, expressed as a numeric value.

Definition 6.7 An agent a = 〈r,Ra, Ba, Ga, Oa〉 has for every goal g ∈ Ga a
goal utility Ug

a ∈ N and has a combined goal utility function Ua : Pow(Lg) −→ N
that maps a set of goals G ⊆ Ga to a combined goal utility u ∈ N.

The potential of an option can be determined by connecting to a personal
goal through a practical argument, following the notion of defensible options as
introduced in Chapter 5.

Recall definition 5.4 Given an agent a = 〈r,Ra, Ba, Ga, Oa〉, some option
o ∈ Oa, some goal g ∈ Ga and an ASPIC− argumentation framework AS with
Rd = Ra and K = Ba ∪{o}, o is an a-g-defensible option if an argument A can
be constructed such that conc(A) = g and o ∈ prem(A).

An option that is a-g-defensible has a demonstrable benefit for the agent.
Moreover, there can be multiple goals that promise to be satisfied from a single
option. In that case an agent might actually prefer the option over another
a-g-defensible option that only has promise to satisfy fewer goals, or rather,
promise less utility. In any case, the self-interestness of a BDI agent is modelled
through the utility that it attributes to an option by means of satisfiable goals,
backed up by practical arguments.

Definition 6.8 For every option o ∈ Oa the option utility is defined by Uo
a =

Ua(G) where G ⊆ Ga such that for every g ∈ G, o is a a-g-defensible option
and such that for every G′ ⊆ Ga where G , G′, for every g′ ∈ G′, o is a
a-g′-defensible option and Ua(G′) ≤ Ua(G).

Hence, the utility for an option is defined by the set of goals that the option
promises to satisfy that give the highest combined utility. How this utility of
a specific set of goals is determined is left undefined, but an implementation of
the attitude assignment function that satisfies this heuristic is found below.

Example 6.4 Consider again agent a1 from running Example 5.1, which was
assigned rules, beliefs, options and goals from a scenario.
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a1
Oa1 o1, o2
Ga1 gd, g1, g2, g4

Ra1 Rr1
a1

o1
%1=⇒ p5, p5

%2=⇒ p2, p2
%3=⇒ g2,

o1
%4=⇒ p6, p6

%5=⇒ p4, p4
%6=⇒ gd,

o2
%7=⇒ p5, p5

%2=⇒ p2,
o2

%9=⇒ p9, p9
%10==⇒ p1,

Rr̄1
a1

o1
%23==⇒ p10, p8

%25==⇒ g3

o2
%26==⇒ p3, p5

%27==⇒ g2,
Ba1 Br1

a1
¬%17,¬p3,

Br̄1
a1

¬%27

As was shown, the agent can connect known options to its personal goals by con-
structing practical arguments. Concretely, the agent can construct arguments
that connect options o1 and o2 to its personal goal g2. With the ASPIC− argu-
mentation system with Rd = Ra1 and K = Ba1 ∪ {o1, o2} of Example 5.1, the
agent can construct:

o1
B′′ = %1p5
B′ = %2p2
B = %3g2

o2
C ′′ = %7p5
C ′ = %2p2
C = %3g2

o1
D′′ = %1p5
D = %27g2

o2
E′′ = %7p5
E = %27g2

To determine the utility of option o1, the utility of every set of goals G should be
considered where for every g ∈ G, o1 is an a1-g-defensible option and such that
this set G has the highest possible utility. Out of all of agent a1’s options, o1
is only a1-g1-defensible, so we only have to consider the sets G′ = {g1} and the
empty set G′′ = ∅. Finally, Uo1

a = Ua(G′) if Ua(G′′) ≤ Ua(G′) or, alternatively,
Uo1

a = Ua(G′′) if Ua(G′) ≤ Ua(G′′).

In a real world agent implementation the combined goal utility for the empty
set G′′ will probably be lower than that for G′, since that includes g1 which the
agent beliefs will be satisfied. However, this is eventually determined by the
concrete implementation of the attitude assignment function.
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Finally, the utility of an option can be used to assign an attitude to it. Again,
various implementations are possible. A reasonable assumption of rationality is
that options that are assigned a build attitude never have a lower utility than
another option that is assigned a destroy utility.

Definition 6.9 An attitude assignment function for agent a satisfies the self-
interested attitude heuristic if for any two options o, o′ ∈ Oa in dialogue d it holds
that if Uo

a < Uo′

a then Ha(d, o) , build and if Uo′

a < Uo
a then Ha(d, o) , destroy.

This is a fair assumption of basic rationality because otherwise the agent
would pursue to build an option while it will destroy an option that it actually
has a higher utility for, and vice versa.

6.4.4 Focused attitudes

The self-interested attitude assignment can be made concrete in various ways.
Two alternatives are introduced here. Both are based on a simple way of com-
bining the utility of a set of goals by summing the individual utilities for each
goal. Although this does not cover the full complexities of real world assessment
of utilities for a set of goals, it models in a straightforward way that multiple
goals together have a single combined utility value.

The two attitude assignment variants will use a slight variation on which
options to build. Although both will destroy any option that it does not want
to build, a realistic albeit quite self-interested approach, the first is willing to
build any option with positive utility while the second is even more focussed.

Definition 6.10 Given a set of goals G, the combined goal utility Ua(G) =∑
g∈G U

g
a . An attitude assignment function for agent a satisfies the spread

attitude heuristic if for every option o ∈ Oa in dialogue d:

• Ha(d, o) = build iff Uo
a > 0,

• Ha(d, o) = destroy otherwise,

An attitude assignment function for agent a satisfies the focused attitude heuris-
tic if for every option o ∈ Oa in dialogue d:

• Ha(d, o) = build iff for each o′ ∈ Oa such that o , o′ it holds that Uo
a >

Uo′

a ,
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• Ha(d, o) = destroy otherwise.

The spread attitude heuristic builds all options for which it has a positive
utility, while the focused variant only build the option with the highest utility.
Although the spread variant is already self-interested, it is arguably slightly less
focused on maximal personal gain. How this difference in attitude assignment
is reflected in a dialogue is a topic for experimentation.

6.4.5 Relevant attack points

Identifying attack points connects the attitudes on options to the moves made
in the dialogue in order to find the attack points. A short example was given
above, but an algorithm will now be introduced that better suits the specifics
of the deliberation model of this paper. Since not only the last move can be
replied to but any earlier move as well, an agent will want to find any point
that allows a legal attacking move. Moreover, if a dialogue protocol restricts
moves to be strongly or weakly relevant, as the confined deliberation protocol
of Definition 3.15, the attack point identification function can already discard
moves to which an attack would not be relevant.

The following relevant attack point algorithm identifies moves as attack
points if they can be attacked in the current dialogue, while being compatible
with the confined deliberation protocol of Definition 3.15 and only considering
strongly relevant moves.

Definition 6.11 Given a dialogue d, an attack point identification function
satisfies the relevant attack point heuristic for an option o ∈ d with associated
proposal move m = propose(o) if Ia(d, o) = getRelevantAttackPoints(d, ∅,m,>)
following Algorithm 1.

The algorithm to find relevant attack points in a proposal tree works by
recursively traversing, depth first, through the moves in a proposal tree. It
relies on the fact that moves that are out are never relevant attack points and
moves that are in are only relevant attack points if they flip the status of the
propose move. Accordingly, the algorithm collects propose and attacking moves
that are in as attack points, while stopping the traversal when a move is out and
also replies to a move that is out, implemented through the parent-is-attacker
parameter pia. Traversal has to stop at this point because from there on there
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Algorithm 1 getRelevantAttackPoints
Input: dialogue d, attack point set N , move m, parent-is-attacker pia
1: if m is a propose move or an attacking move then
2: if m is in then
3: {Only include moves that are in}
4: N = N ∪ {m}
5: for all m′ ∈ d where target(m′) = m do
6: getRelevantAttackPoints(d,N,m′,>)
7: end for
8: end if
9: else if pia then
10: for all m′ ∈ d where target(m′) = m do
11: getRelevantAttackPoints(d,N,m′,⊥)
12: end for
13: end if
14: return N

will be no strongly relevant moves in the tree, since even when making the move
at this point in will never flip the status of any move upwards in the tree.

Proposition 6.1 Given a dialogue d, m ∈ getRelevantAttackPoints(d, ∅,m,>)
iff any attacking move m′, such that target(m′) = m, is strongly relevant with
respect to Definition 3.11.

Proof → Recall that a more is strongly relevant if it flips the status of the
propose move. First consider if m is in in a branch under two subsequent out
moves. An attacking reply on m would never be relevant as the tree root, the
proposal move, status will never flip. Second, if m is not under two subsequent
out moves, an attack on m will always flip the status of the attacked move
target(m) = m′, which in turn would flip the status of target(m′) until the tree
root, the propose move, inevitably flips status. ← If m is not an attacking
or propose move, it is trivially never strongly relevant. If m is an attacking or
propose move, first consider ifm is in a branch under two subsequent moves that
are out. It would is not relevant as an attack on m will never flip the propose
move status. Second, if m is not under two subsequent out moves, an attack
on m will not flip the status of the targeted move target(m) and will therefore
never flip the status of the propose move, so it is never strongly relevant.
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Example 6.5 Consider again the example deliberation dialogue in Figure 6.1.
The getRelevantAttackPoints algorithm identifies the attack points for the
goToBistro tree by starting at its root. Since the propose move m1 is in, this
needs to be included. It is always a point that can be attacked with strong
relevance. Note that there may be no more valid moves under the dialogue
protocol, but this is not part of the attack point identification process. The
propose move’s reply why-propose(goToBistro) is not in and therefore not a rel-
evant attack point. After all, an attack on this would not influence the move’s
status, as it already has an attacker that is in, and consequently not influence
the status of the propose move. We remember that this move was out by setting
the parent-is-attacker parameter to ⊥. This means that its replies need to be
in in order to keep collecting relevant attack points. Since move m6 is not, that
move and none of the moves further in this branch are collected. This makes
sense, since an attacking move here will not flip the proposal move status. In-
stead, move m13 is included, being the reason that why-propose(goToBistro) is
out. Hence, getRelevantAttackPoints(∅,m1,>, d) = {m1,m13}.

Note that attitudes towards options are not yet used in an attack point
identification function. The result of the attack point identification function
is a set of attack points N from which the move generation method can select
a move to actually attack, if so desired, which is guaranteed to be strongly
relevant.

6.4.6 Thorough attacker generation
Even when just restricting move generation to providing attackers to the already
identified attack points, different locution types are available and the actual
move content still needs to be generated. A move selection function needs to
decide which attack point to reply to. In case of an argue move it may reply
with a counterargument or play a why move. One solution is to iterate over the
attack points try to find any possible attacking move. If one is found, this is
directly returned as new move. Only if no new attacking move can be made will
the agent skip its turn, which is why this heuristic is called thorough. Moreover,
options that are beneficial for the agent, with an assigned build strategy, are
proposed if they were not proposed yet.

Definition 6.12 Let d be some dialogue and a be an agent with sets of rulesRa,
beliefs Ba, goalsGa and options Oa. A move generation function satisfies the ba-
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sic thorough attacker heuristic if Ga(d,Ra, Ba, Ga, Oa) = generateMove(d,Ra, Ba,

Ga, Oa) following Algorithm 2

Algorithm 2 generateMove
Input: dialogue d, rules Ra, beliefs Ba, goals Ga, options Oa

1: for all o ∈ Oa do
2: h = Ha(d, o)
3: {Find a propose move for this option}
4: mo a move such that content(mo) = propose(o)
5: if mo < d and h = build then
6: return propose(o)
7: else if mo ∈ d and (h = build and mo is out) or (h = destroy and mo is

in) then
8: {Loop through all attack points}
9: AS is an ASPIC− argumentation framework with Rd = Ra and K =

B′a ∪ {o}
10: for all m ∈ Ia(d, o) do
11: if m = propose(o), content(m′) = why-propose(o) and m′ < d then
12: return why-propose(o)
13: else if m = argue(A), content(m′) = argue(B), B on the basis of AS

defeats A and m′ < d then
14: return argue(B)
15: else if m = why-propose(o), content(m′) = argue(A) where A is on

the basis of AS with o ∈ prem(A) and m′ < d then
16: return argue(A)
17: else if m = why(p), content(m′) = argue(A) where A is on the basis

of AS and m′ < d then
18: return argue(A)
19: end if
20: end for
21: end if
22: end for
23: return skip

Note that at most one move per proposal tree is made, but this is a character-
istic of the algorithm and not enforced by the dialogue protocol. The algorithm
is called basic because there are many improvements that can be made. First,
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selecting just the first possible attacking move might not be the best solution.
Second, the algorithm does not consider to play any surrenders, option prefer-
ence or inform moves. Finally, although the heuristic is thorough, it might be
better not to play certain attackers, even when it would flip the proposal move
status in a beneficial way, because the information contained in the attacking
move might be used against the agent. In conclusion, the algorithm results in
agent behaviour that is self-interested, proactive and adheres to the protocol,
but many improvements can still be thought of.

6.4.7 Non-arguing agents
Whether an agent uses an argumentation logic for internal reasoning, revising
knowledge and assigning attitudes, is eventually not the determining factor
in calling it an arguing agent. Rather, the ultimate factor in being an arguing
agent is whether it can motivate its proposals and claims by playing arguemoves.
Hence, for the purpose of comparing arguing versus non-arguing performance,
agents need to be introduced that can internally reason over proposals but that
do not attack and support proposals and claims with argue moves.

From this it follows that a non-arguing agent differs to an arguing agent
solely on its move generation. The non-arguing variant can still use argumen-
tation to revise knowledge or assign option attitudes. However, it will no play
any argue moves. Two move generation functions will now be introduced that
implement this idea of non-arguing agents.

Definition 6.13 A move generation function for agent a in dialogue d with
sets of rules Ra, beliefs Ba, goals Ga and options Oa satisfies the propose and
reject heuristic if Ga(d,Ra, Ba, Ga, Oa) = m such that

• content(m) = propose(o) if there exists an o ∈ Oa such that Ha(d, o) =
build and m < d,

• content(m) = reject(o) if there exists an o ∈ Oa such that Ha(d, o) = build
and some move m′ < d with content(m′) = propose(o),

• content(m) = skip otherwise.

Put simply, an agent employing a propose and reject heuristic will only play
propose and reject moves. If it has a build attitude towards an option, it will
propose this option. If the agent has a destroy attitude towards an option, it
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will reject the option. Recall that rejecting a proposal is similar to questioning
it with a why-propose move, except that a reject move can not be attacked,
in contrast with the why-propose move to which an argument can be played
showing the connection between an option and the mutual goal.

This propose and reject heuristic might seem simplistic, but it is similar
to a simple negotiation strategy where agents make and reject proposals until
they find one that they can agree on. Moreover, the agent can still use internal
argumentation-based reasoning like the simple rational agent does, so it makes
very clear the difference between playing argue moves or not.

Arguably, a non-arguing agent should still be able to expose internal beliefs,
for the purpose of informing other agents. As non-arguing agents will not
specifically ask for clarification, it can’t rely on (relevant) arguments. Instead,
if an agent deems it necessary to tell other agents about some belief, it may use
the inform locution. A straightforward implementation for an agent is to simply
play an inform move for each of its internal beliefs.

Definition 6.14 A move generation function for agent a in dialogue d with
sets of rules Ra, beliefs Ba, goals Ga and options Oa satisfies the propose and
inform heuristic if Ga(d,Ra, Ba, Ga, Oa) = m such that

• content(m) = propose(o) if there exists an o ∈ Oa such that Ha(d, 0) =
build and m < d,

• content(m) = why-propose(o) if there exists an o ∈ Oa such thatHa(d, 0) =
build and there exists no m′ ∈ d with content(m′) = propose(o),

• content(m) = inform(p) if there exists an p ∈ Ba and there exists no
m′ ∈ d with content(m′) = inform(p),

• content(m) = skip otherwise.

Agents that employ the propose and inform heuristic will not only make and
reject proposals, but also play inform moves for the local beliefs it has. This
way it can inform other agents of its personal beliefs, which may influence the
others, for example if they adopt those beliefs into their own knowledge.

6.5 Agent behaviour in experiments

Now that every step in the agent’s decision procedure has been formalized,
they can be combined to form a single agent behaviour. This fully specifies the
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strategic behaviour of an agent in a deliberation dialogue situation, by using
the output of one step as input into the next.

Definition 6.15 An agent a’s agent behaviour Sa = 〈Ba,Ha, Ia,Ga〉 is a tuple
such that:

• Ba(d,Ra, Ba, Ga, Oa) = (R′a, B′a, G′a, O′a),

• for each o ∈ O′a, Ha(d, o) = h on the basis of Ba,

• for each o ∈ O′a, Ia(d, o) = N on the basis of Ba,

• Ga(d,R′a, B′a, G′a, O′a) = m on the basis of Ba, Ia and Ga,

Hence, the agent behaviour function regulates that the output one step in
the decision process is used as input to another. Concretely, the output of the
internal state revision step Ba is used by all other three functions in the agent
behaviour, while the attitude assignment Ha and attack point identification Ia

functions are used in the last move generation step Ga as well.
It is interesting to see how agent behaviour influences the course of a dia-

logue. For this purpose, a simple rational agent is now introduced that combines
the above defined heuristics into a fully specified agent.

Definition 6.16 A simple rational agent is an agent a with agent behaviour
Sa = 〈Ba,Ha, Ia,Ga〉 such that:

• Ba(d,Ra, Ba, Ga, Oa) = (Ra, Ba, Ga, Oa ∪Qd),

• Ha implements the spread attitude heuristic,

• Ia implements the relevant attack point heuristic,

• Ga implements the basic thorough attacker heuristic.

The knowledge revision function Ba makes concrete the minimal knowledge
revision heuristic by only adding any proposed option to its personal beliefs.
Attitude assignment function Ha, attack point identification function Ia and
move generation function Ga are taken directly from the above proposed heuris-
tics, which are already concrete. Together they form a simple yet rational agent
that uses argumentation for internal reasoning and is called an arguing agent
as it will play argue moves in a dialogue.

125



6. Agent behaviour

Example 6.6 Consider again the generated example scenario from Chapter 4.
All three agents are simple rational agents. On top of the assigned knowledge
from the scenario, which can be found in Example 4.5 on page 72, the agents
have a specific utility for each of their personal goals.

a1 a2 a3
Ugd

a1
1 Ugd

a2
2 Ugd

a3
5

Ug1
a1

2 Ug1
a2

3 Ug3
a3

5
Ug2

a1
4 Ug2

a2
4 Ug4

a3
1

Ug4
a1

5 Ug3
a2

3 Ug2
a3

1

The agents will deliberate in a dialogue d and are all committed to find an
option that will realise mutual goal gd. Agent a1 is the player of the first turn.
It will first consider revising its knowledge, but since dialogue d is still an empty
sequence it will not add or drop any knowledge yet.

The next step is assigning attitudes to the options it knows about, for which
it first has to establish which options are defensible by which goals. For each
option it constructs an argument that connects the option to each personal goal,
if they exist. As seen above, and originally in Chapter 5, the agent can for both
its options o1 and o2 construct an argument to its personal goal g2. In fact,
it can construct two of such arguments for each option, but one is enough for
the option to be a-g2-defensible. For both options the agent will now assess
the utility by computing the combined goal utility U(∅) and U({g2}). Since
the specific function will simply sum the utilities of individual goals in the set
U(∅) = 0 and U({g2}) = 4 which, by picking the set with the highest combined
utility, will result in option utilities Uo1

a = 4 and Uo2
a = 4. Finally, the agent

assigns a build attitude to options with a positive utility and a destroy utility
otherwise. Since both options have a positive utility the resulting attitude
assignment Ha(d,Oa) = {(o1, build), (o2, build)}.

The agent has determined that it wants to build both options it knows about.
Since there are no moves yet in the dialogue it does not need to identify attack
points yet. Move generation is also easy. The generateMove algorithm will
first look if option o1 is already proposed in d and if not it will propose the
option if it has a build attitude. Hence, the move generation function will
return G(d, S,N) = propose(o1).
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1a1 : propose(o1) 3a2 : propose(o2)

5a3 : why-propose(o1)

6a3 : propose(o3)

8a1 : argue(o1; o1
%4=⇒ p6; p6

%5=⇒ p4; p4
%6=⇒ gd |∼ gd)

9a1 : why-propose(o3)

12a3 : argue(¬p4 |∼ ¬p4)

14a3 : argue(o3; o3
%17==⇒ p7; p7

%21==⇒ p8; p8
%22==⇒ gd |∼ gd)

16a1 : argue(o1; o1
%4=⇒ p6; p6

%5=⇒ p4 |∼ p4) 18a2 : argue(¬p7 |∼ ¬p7)

20a3 : argue(o3; o3
%17==⇒ p7 |∼ p7)

22a1 : argue(¬%17 |∼ %17)

Figure 6.2: The proposal trees a dialogue with three simple relevant agents
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Form here on it is still the turn of agent a1. That will also want to propose
the other option o2 but the dialogue protocol restricts this. Instead it can only
skip for now. The turn is given to the next agent in line, agent a2, who now
applies its knowledge revision and strategy functions. Eventually this will lead
to the dialogue of Figure 6.2. Note that skipmoves are numbered but not shown.

This chapter has formalized agent behaviour in deliberation dialogues. The
knowledge revision and strategy functions provide a clear separation of individ-
ual decision steps that agents have to make in a deliberation situation. The func-
tions allow for a great variety of possible implementations and several heuristics
for concrete implementations have been introduced. Chapter 8 will use the sim-
ple rational agent to compare it against an agent that does not argue in the
dialogue at all. The dialogues played by these two different agents can then
be analysed to compare the benefits of using argumentation in a multi-agent
deliberation dialogue by means of various desirable properties, which Chapter 7
will introduce.
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Chapter 7

Dialogue metrics

The goal of this thesis is to study if it is beneficial for agents to use argumenta-
tion in deliberation-style dialogues. However, as of yet it has not been discussed
what these benefits actually are. To understand what benefits argumentation
can bring, it first has to be studied what actually is desirable.

This chapter will first discuss which properties are desirable in multi-agent
deliberation dialogues. This will lead to the introduction and formalization of
four metrics, which can be applied to deliberation dialogues to test how good a
dialogue was. In this way, metrics can be used to compare dialogues, notably
dialogues produced by different agents to compare if it is beneficial to adopt
certain behaviour.

7.1 Desirable properties

To be able to measure if a dialogue exposes desirable behaviour, it must first be
established what kind of behaviour is desirable. This is not straightforward, as
the desirable properties of a multi-agent dialogue system are dependent on the
goals of the system. For instance, the designer of a system in which different
agents deliberate on a place to have dinner, likely values highly how the final
outcome of a dialogue reflects the personal utilities of individual agents. On the
other hand, in some systems the information that is exchanged should (also) be
minimized, such as in a medical system where privacy issues call for a minimal
exchange of data. A final example is a public or governmental system, where
decisions need to be understandable by humans and irrelevant aspects should
be ignored by the agents. In any case, every system has different desirable
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properties and metrics should be defined accordingly.
A number of metrics for argumentation-based dialogue systems have been

introduced in the literature, each to be able to measure a different desirable
property of the argumentation systems used. Three papers are of special inter-
est. First, Pasquier et al. (2010) have investigated how an exchange of personal
goals in a negotiation dialogue may increase the likelihood and quality of agree-
ments. Whether agents can agree with each other is measured by having agents
explicitly accept or refuse a certain proposal. The experiments showed that
agents that ask for and expose personal goals are more likely to agree on a
specific proposal. Moreover the quality is measured in terms of the execution
cost of the proposed option. Options with costly plans have a low utility for
the multi-agent system, while cheaper plans are more desirable as the combined
utility of the agents is higher.

Second, Karunatillake et al. (2009) have performed experiments with nego-
tiation-style dialogues, but have used slightly different metrics. The quality of
outcomes is also measured in terms of combined utility for the agents in the sys-
tem. However, this effectiveness measure is determined by explicitly summing
the utilities of agents as expressed in their personal goals, rather than comput-
ing the objective cost of a proposal. The other metric used in the experiments
relates to dialogue efficiency. By counting the number of moves it was possible
to measure how different agent behaviours influence the communication costs
in terms of number of required utterances.

Third and finally, Amgoud and Dupin De Saint-Cyr (2008) propose several
metrics for agent performance in persuasion dialogues. First, moves, specifically
argue moves, are assigned a numeric weight value, which is used to calculate an
agent’s contribution in the dialogue and the overall dialogue weight. Second,
the number of formulas (beliefs and goals) that are exposed in the dialogue are
counted for every agent to assign each agent a degree of loan. This indicates
to what degree an agent was able to reuse the knowledge of others as opposed
to having to expose personal knowledge. Both proposed metrics apply to the
performance of an agent, rather than to the performance of the multi-agent sys-
tem. Hence, these measurement cannot directly be used to derive an objective
measurement of the quality of a dialogue. However, see below for a variation of
the degree of loan to apply to a dialogue as a whole.
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7.2 Metrics for deliberation

Inspired by the literature, four metrics will now be introduced. The approach
is that metrics for deliberation dialogues operate on two distinct dimensions:
efficiency versus effectiveness and communication versus topic layers. Efficiency
pertains to using limited resources, whether it is time, the required number of
messages or the required amount of information that was exchanged. On the
other hand, effectiveness measures how appropriate the dialogue was, such as
moves being relevant or how well the dialogue outcome suits the multi-agent
system. Efficiency and effectiveness can be measured for both the communi-
cation layer and the topic layer. Communication is the carrier of information,
while the topic layer contains the actual arguments and knowledge. This leads
to four ways in which dialogues are measured.

efficiency effectiveness
communication layer move count relevance

topic layer information concealment combined utility

Four metrics will now be introduced to measure if dialogues are efficient or
effective on the communication or topic layers. The specifics of a multi-agent
system will eventually determine which metrics should be applied. For instance,
an experiment in a system with sensitive information can apply the concealment
metric that tests topic efficiency.

7.2.1 Communication efficiency
Efficiency on the communication layer measures how much resources are used
by the agents to play their moves in the dialogue. In a typical deliberation
system a dialogue with few moves may already be considered better than one
that uses many, but efficiency is of special importance if communication in a
system is expensive, for example, if exchange of dialogue moves uses a paid
platform. Efficiency can be measured by counting the number of moves made
in a dialogue.

Definition 7.1 The move count of a dialogue d is measured by

movecount(d) = |{m|m ∈ d and content(m) , skip}|

Move efficiency counts all moves in a dialogue that are not skip moves, as
those moves are merely used to control the flow of turn taking.
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Example 7.1 Consider again the dialogue d between three simple relevant
agents, which was visualized in Figure 6.2. movecount(d) = 12 as there are
26 moves in d, but only 12 when not counting the skip moves.

7.2.2 Communication effectiveness
Another requirement on the communication is for it to be effective. Effective
communication does not pertain to the amount of used resources, but to how
appropriately the resources were used. Intuitively, a move is appropriate when
it helps bring understanding to the topic at hand. The dialogue model already
introduced a way of determining this in the form of strong and weak relevance
of moves. If a move is relevant, it is an effective use of the communication layer.
Moves that do not directly relate to a proposed option are considered irrelevant,
for instance any inform move. Since they are irrelevant, such moves will bring
down communication effectiveness of a dialogue.

Definition 7.2 Given a dialogue d, let d′ be a set of moves such that for every
move m ∈ d, either m ∈ d′ or content(m) < {skip, prefer, prefer-equal}. The
degree of relevance of dialogue d is measured by

relevance(d) = |{m|m ∈ d
′ where m was strongly relevant}|

|d′|

or if |d′| = 0 then relevance(d) = 0.

This thesis will only measure strong relevance. The definition of strong
relevance applies only to moves that are made in a proposal tree. Other moves,
such as inform, skip, prefer and prefer-equal moves are never relevant. However,
skip move is merely a construct to control turn taking and prefer and prefer-equal
moves are useful when establishing a dialogue outcome. Intuitively they don’t
diminish communication effectiveness. For that reason the moves of these types
will not be considered in the degree of relevance metric.

It should be noted that some arguing agent behaviours are restricted to only
play relevant moves. Importantly, the arguing agent defined in Chapter 6 uses
the relevant attack points heuristic and therefore only plays relevant moves. On
the other hand, the non-arguing propose and inform heuristic of Definition 6.14
is an example of an agent that does not play strictly relevant moves. Chapter 9
will provide some ideas for arguing agents that might not restrict themselves to
the playing of strongly relevant moves.
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Example 7.2 In the example of Figure 6.2 every move that the agents made,
not considering skipmoves, was strongly relevant, that is, relevance(d) = 12

12 = 1.
Note that this is expected because the attack point identification function of
the simple relevant agents only aggregates moves to which an attacker would be
strongly relevant. Chapter 8, however, will introduce agents that communicate
but are not always strongly relevant.

7.2.3 Topic efficiency
Efficiency can be measured through the number of moves that are made, but this
metric does not regard how much information is exposed by a move. Various
systems can be thought of where it is desirable to have as little information in
the played moves as possible, such as a system dealing with privacy data or in
dialogues between business competitors.

Information is exposed in a dialogue by means of three types of moves:
propose, argue and inform. Agents that want to conceal their knowledge can re-
frain from playing these moves, or use rules, beliefs, options and goals that other
agents already played in the dialogue. To measure information concealment on
a dialogue as a whole, the exposed rules and formulas from the topic language
are counted and compared to the total number of rules, beliefs, options and
goals.

Definition 7.3 Given a dialogue d, the set of agents A where each a ∈ A is an
agent a = {d,Ra, Ba, Ga, Oa}, the number of exposed rules, beliefs and options

xd = |
⋃

m∈d

{o|content(m) = propose(o)}∪⋃
m∈d

{p|content(m) = inform(p)}∪⋃
m∈d

{prem(A)|content(m) = argue(A)}|+

|
⋃

m∈d

{rules(A)|content(m) = argue(A)}|

and the number of available rules, beliefs and options

nA = |
⋃

a∈A
Ra|+ |

⋃
a∈A

Ba|+ |
⋃

a∈A
Oa|
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the degree of information concealment of a dialogue d is measured by

conceal(d) = nA − xd

nA

The number of rules, beliefs and options are counted that are used in the
moves in the dialogue and this is compared against the total number of available
rules, beliefs and options, as were assigned to the agents. Note that goals are
not considered here, as only the mutual goal will be played by the agents in
this thesis and this is already given in the dialogue context. The degree of
information concealment represents the percentage of rules, beliefs and options
that agents did not (have to) use in the dialogue, that is, which were concealed.

Example 7.3 The moves in the example dialogue represented by Figure 6.2
expose rules, beliefs and options through propose and argue moves. Exposed
are x = |{o1, o2, o3,¬p4,¬p7,¬%17}| + |{o1

%4=⇒ p6, p6
%5=⇒ p4, p4

%6=⇒ gd, o3
%17==⇒

p7, p7
%21==⇒ p8, p8

%22==⇒ gd}| = 6 + 6 = 12 and available are n = 30 + 7 + 3 = 40
rules, beliefs are goals, hence conceal(d) = 40−12

40 = 0.7.

7.2.4 Topic effectiveness

The final metric applies to the topic effectiveness, that is, how effective the
result of the dialogue was for the multi-agent system as a whole. An effective
dialogue result means that the result was desirable with regards to all agents in
the system. As discussed above, this can be expressed in terms of the combined
utility that the selected dialogue outcome has for each individual agent. The
utility that agents in this thesis assign to every option is used here. The utility
every agents has for the dialogue outcome is simply summed, as in Karunatillake
et al. (2009).

Definition 7.4 The combined utility of a dialogue d with mutual goal gd is
measured by

utility(d) =
∑
a∈A

U
O(d,gd)
d,a

Recall that O(d, gd) returns the option selected as dialogue outcome and
subsequently UO(d,gd)

d,a returns the utility that an agent assigned to the dialogue
outcome. The dialogue outcome is thus determined by the sum of utilities
for the dialogue outcome by all agents. Note that in this thesis the dialogue
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outcome is determined by selecting an arbitrary proposal whose propose move
was in.

Example 7.4 Three proposals were made in the running example dialogue of
Figure 6.2, but only the propose moves for o1 and o2 were in. Say that the
dialogue outcome selected is O(d, gd) = o1. As seen above in Example 6.6 agent
a1 has an option utility Uo1

a1
= 4 for this proposal. Agent a2 has practical

arguments connecting o1 to g1 as well as g3 and therefore Uo1
a2

= Ug1
a2

+ Ug3
a2

=
3 + 3 = 6. Agent a3 has no practical argument connecting o1 to any of its
personal goals, so Uo1

a3
= 0. Finally, the combined utility of the dialogue is

utility(d) = 4 + 6 + 0 = 10. Interestingly, if not o1 but rather o2 would have
been selected as dialogue outcome then utility(d) = 4 + 7 + 1 = 12. Option o3
was not in and is therefore not considered as dialogue outcome, but the agents
have a summed utility for o3 of 0 + 0 + 1 = 1.

Measuring the quality of the dialogue outcome by combined utility is only
one way to assess topic effectiveness. In game theory a selected outcome is
often evaluated on the basis of Pareto optimality. An option in a deliberation
dialogue is Pareto optimal if for any other option there is at least one agent
that ends up with a lower utility.

Definition 7.5 Given a dialogue d with mutual goal gd and set of dialogue
proposals Qd, the dialogue outcome o = O(d, gd) is Pareto optimal iff there
exists no o′ ∈ Qd where o′ , o such that for each agent a ∈ A, Uo′

d,a ≥ Uo
d,a and

for some agent a ∈ agents, Uo′

d,a > Uo
d,a.

In other words, an option is Pareto optimal of there is no other option for
which every agent has at least the same utility and for which at least one agent
has a greater utility. Note that a dialogue may have multiple Pareto optimal
options or none at all and that the option with the highest combined utility is
always Pareto optimal. Whether the combined utility or the Pareto optimality
of a dialogue outcome should be used by an experiment designer as a measure
for topic effectiveness depends on the specific dialogue system. Combined utility
aims at a maximization of system utility, while the Pareto optimality balances
individual agent preferences.

Example 7.5 The option utilities for the agents in the running example of
Figure 6.2 are, as discussed above, as follows:
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o1 o2 o3
a1 4 4 0
a2 6 7 0
a3 0 0 1

Say again that the dialogue outcome O(d, gd) = o1. This outcome is not
Pareto optimal since alternative o2 would have at least one agent, that is, agent
a2, that would be better off, without having an agent that would get a lower
utility. Outcome O(d, gd) = o2, however, is Pareto optimal, as option o1 would
not make any agent better off and a switch to option o3 would make a3 better off
but not without making agents a1 and a2 worse off. Finally consider o3. As the
propose move for o3 is out, the dialogue outcome function would never select o3
as dialogue outcome. Recall that options whose propose moves are out are not
considered as in the dialogue the proposal was successfully attacked. In other
words, the agents provided arguments, to which no counter evidence was given,
that showed why the proposal should not be considered as dialogue outcome.
However, if it would be considered, o3 would actually be a Pareto optimal
outcome. Although it has a very low combined utility of 1, there is actually no
alternative option that would make another agent better off without agent a3
loosing its utility.

7.3 Application of metrics

This chapter has introduced four metrics to test deliberation dialogues on four
distinct desirable properties. It focusses on testing the multi-agent system as a
whole, rather than on properties that individual agents may desire. Depending
on the concrete dialogue system some metrics may be more or less applicable.
This is also the reason why the metrics can not be accumulated into a single
generally applicable metric for dialogue performance. Individual goals of the
multi-agent system have to be tested separately.

Through the four introduced metrics, objective measurements on the per-
formance of agents in an argumentation-supported dialogue can be made. This
means that it is now possible to have agents engage in a deliberation dialogue
given some scenario and compare performance of various agents. Through an
experimental setup the performance of arguing and non-arguing agents can be
compared on all four metrics for desirable properties for deliberation dialogues.
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Chapter 8

Testing the benefits of
argumentation

At the start of this thesis a goal was set to investigate the benefits of argu-
mentation in multi-agent deliberation dialogues. Put simply, benefits of argu-
mentation can be investigated by comparing the performance of arguing versus
non-arguing agents. This chapter will consider several variations of arguing and
non-arguing agents and experimentally show how they perform in terms of the
four metrics for deliberation dialogues defined in the last chapter.

8.1 Experimental design

An experimental platform was designed and implemented for the comparison of
the performance of agent behaviours. The primary purpose was to compare ar-
guing and non-arguing strategies, while the various alternative implementations
introduced in Chapter 6 were tested as well.

8.1.1 Connecting the experimental models
The experimental platform consists of implementations for the full stack of
models required to perform automatic experiments with deliberation, that is,
implementations of the dialogue model, the scenario generation model, the agent
behaviour model and the four deliberation dialogue metrics. The general idea is
to generate many scenarios, which will then be played by specific agents within
the deliberation dialogue model. Every playing of a scenario represents a single
experiment run, which can be analysed using the dialogue metrics. Within a
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single run every agent uses the same implementation of the four functions that
define an agent behaviour. This way, alternative behaviours can be compared,
such as arguing and non-arguing agents, by testing the performance of many
experiment runs for each behaviour.

Definition 8.1 A deliberation experiment run is a tuple X = 〈DK,SK,A,Sa,

dt,O〉 such that

• DK = 〈AS,Lt, Lc,P,A, gd〉 is a deliberation dialogue context following
Definition 3.1 such that

– P is the confined deliberation protocol of Definition 3.15,
– Qj is the set of justifiable options of Definition 3.20,

• SK is a scenario generation context following Definition 5.1,

• S = 〈B,H, I,G〉 is an agent behaviour following Definition 6.15,

• for every agent a ∈ A it holds that

– a = 〈r,Ra, Ba, Ga, Oa〉 generated under SK,
– agent behaviour Sa = S,

• dt is the terminated dialogue between agents A with mutual goal gd in
context DK,

• O is the dialogue outcome function given context DK where O(dt, gd) = o

such that o is an arbitrary option o ∈ Qj .

For the purpose of the experiments in this chapter, the confined deliberation
protocol was used. As the minimal protocol, it regulates turn taking, forbids
repeating moves and forces agents to explain propose moves through arguments
concluding the mutual goal. However, it also restricts agents to play relevant
moves, allows only one propose move in a turn and disallows replies to ones own
moves.

The scenarios generated for each experiment run use the model introduced
in Chapter 4. Using a specific scenario generation context SK, the agents in
the dialogue run are initialised with rules, beliefs, goals and options. Every
agent plays the dialogue using the same behaviour S, following Chapter 6,
consisting of four concrete implementations of the deliberation decision steps.
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It is by varying the concrete functions B,H, I and G in the strategy that a
comparison between agent behaviours is possible. Finally, the four metrics of
Chapter 7 are applied at the end of an experiment run to test the performance,
specifically to terminated dialogue dt with dialogue outcome O(dt, gd). Which
metric is interesting is dependent on the used agent behaviours and the goal of
the specific experiment.

8.1.2 Scenario generation configuration

The scenarios generated under context SK, which result in a set of agents A
with assigned rules, beliefs, goals and options, are generated using a concrete
configuration of input parameters. In Chapter 5 an experiment was performed
to find the ideal configuration of input parameters on the basis of four distinct
metrics for scenario interestingness. As the four metrics cannot be combined
directly, a choice has to be made which ideal configuration is used for the
experimental platform. Although all four of the introduced metrics provide
desirable properties on the scenario generation process, the option defensibility
metrics are of most importance. Recall that this metric tests to what extent
agents can couple the assigned options to their personal goals. This is important
in deliberation experiments since we want to compare self-interested agents. For
example, the simple relevant agent bases the attitude assignment to an option
on the goals to which it can connect the option.

Table 8.1 shows the ideal setting for each input parameter of the scenario
generation model as was originally listed in Table 5.3. The ideal setting promises
to give the highest number of defensible options for every agent, based on the
prediction from the underlying multiple linear regression model.

Unfortunately, the parameter configuration is in practice not able to gener-
ate viable scenarios. The ideal setting would theoretically produce the highest
possible option defensibility, but when scenarios were actually generated with
the software implementation, a problem arises. Because of the assignment of
(relatively) many rules, through high values of nBr

a
and nBr̄

a
, the resulting sce-

narios almost always contain rule loops. As explained in Section 5.3.3, rule
loops are not supported in the ASPIC Java Components library as the software
would then run infinitely. The experimentation platform can, in such a case,
generate a new scenario, but with the ideal parameter configuration the prob-
lem will persist. For this reason the values for nBr

a
and nBr̄

a
are lowered until

a workable situation occurs. As it happens, the size of the seed set of options
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Table 8.1: Statistically ideal (for jgd

A ) and experimentally used input parameter
configurations

Statistically ideal Used in experiments
Conflicts Chained Chained
nA 7 7
nR 8 8
nBSK 40 40
nOSK 34 17
nGSK 12 12
nOr 8 8
nGr 5 5
l 2 2
nGr̄

a
2 2

nBr
a

70 60
nBr̄

a
45 35

nOSK has to be adjusted accordingly to prevent the now more scarce rules as-
signed to agents to be unrelated to each other, dropping the expected option
defensibility again. The final input parameter configuration that was used for
all experiments in this chapter is shown in Table 8.1.

8.1.3 Implementation details

Every model in the experimental platform was implemented as part of a Java
application, which uses the ASPIC Java Components of South and Vreeswijk
(2009) to construct and evaluate arguments. The dialogue model introduced in
Chapter 3 forms the base of the platform that starts and terminates dialogues in
some context DK and allows agents to play moves. Several noteworthy decisions
were made during the implementation of the experimentation platform.

First of all, the agent behaviours that were experimented with in this chapter
all rely on goals to have a single utility value. As presented in Definition 6.7, the
agent has a numeric value for each goal indicating the utility. This is used to
establish option utility and subsequently in the assignment of option attitudes.
However, the scenario generation model, which assigns goals to agents, does not
yet assign a utility to goals.
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For each experiment run the agents will be assigned a utility for each of their
goals. One important aspect is that agents are all allocated the same summed
amount of utility. This is vital since the utilities between different agents need
to be comparable. For instance, the combined utility metric for deliberation
dialogues sums the utilities that different agents have for an option. If one
agent had much higher utilities, then this agent would have a stronger influence
on the metric than others, which is not desirable within the experiments of
this thesis. Instead, in the experiments for this chapter a simple assignment
of utilities is used, which ensures a constant amount of utility per agents and
every goal for an agent to still have a different valuation.

Definition 8.2 Let X = 〈DK,SK,A,Sa, dt,O〉 be an experiment run. Each
agent a ∈ A with set of goals Ga = {g0, . . . , gi, . . . , gn} is assigned a sequence of
goals ~Ga = 〈g0, . . . , gi, . . . , gn〉, where for each goal g ∈ Ga, g ∈ ~Ga and i ∈ N
is the sequence index. Goal gi ∈ ~Ga has a goal utility Ugi

a = i.

Example 8.1 Simply put, every goal has a utility that is the value of its index
in the set (turned into a sequence) of goals. For instance, if an agent a1 was as-
signed a set ofGa1 = {g2, g4, g5, gd} and thus the sequence ~Ga1 = {g2, g4, g5, gd},
then it has goal utilities Ug2

a1
= 1, Ug4

a1
= 2, Ug5

a1
= 3 and finally Ugd

a1
= 4. The

total utility assigned to the agent is
∑

g∈Ga
Ug

a = 10. The scenario generation
model ensures a fixed size nGr

+ nGr̄
a
for the set of goals for every agent and

therefore the total assigned utility to each agent is equal.

One can think of situations where a different utility allocation is desirable.
Perhaps certain agents have a more authoritative role and should be assigned
more utility accordingly. Another alternative is when the utility for a combi-
nation of goals G, defined by Ua(G), cannot simply be determined by summing
their individual utilities. In that case the option utility function needs to be
adjusted from the simple summing specified in Definition 6.16. Such situations
fall outside the scope of this thesis.

Finally, there are some points to be made concerning the application of the
dialogue metrics. The combined utility and Pareto optimality metrics operate
on a dialogue outcome, for which there needs to be at least one proposal that
was in. This is because the dialogue outcome function only selects an outcome
from the proposed options whose propose move was in. To make sure that the
metrics return a value even without dialogue outcome, any dialogue d without
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a dialogue outcome is considered to have a zero dialogue utility utility(d) = 0
and is considered to not have a Pareto optimal outcome.

8.1.4 Method
Experiments were performed using the implemented experimentation platform
to compare the performance of individual agent behaviours. Each experiment
consisted of two distinct behaviours, for which 1000 experiment runs were per-
formed per behaviour, to make a total of N = 2000 experiment runs. Running
time of an experiment depended heavily on the two agent behaviours used but
roughly varied between 10 to 90 minutes.

The two distinct behaviours in an experiment can be compared directly
as all other elements of the experimental platform are kept constant. Two
specific behaviours are chosen each time to test a specific hypothesis. The
scope and configurability of the experimentation platform offer a wide variety of
experiments to perform. The experiments in this chapter focus on the differences
between arguing and non-arguing agents and on the effect of the individual
decision steps in an arguing agent, in order to answer the general research
question posed at the start of this thesis whether it is beneficial for the multi-
agent system to allow argumentation in deliberation situations.

Table 8.2 lists the six behaviours that were experimented with. For each
experiment the simple rational agent was compared to a single other behaviour,
with only one of the four decision step functions being different. This makes for
a total of five experiments for which the differences in metrics directly reflect
the different decision step implementation.
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Table 8.2: Decision functions used in each agent behaviour S = 〈B,H, I,G〉 (with original definition numbers
in parenthesis)

S B H I G
simple rational agent (6.16) simple belief revision (6.5) spread attitude (6.10) relevant (6.11) basic thorough attacker (6.12)
naive revision agent naive revision (6.6) spread attitude relevant basic thorough attacker
considerate revision agent considerate revision (6.6) spread attitude relevant basic thorough attacker
focused attitude agent simple belief revision focused attitude (6.10) relevant basic thorough attacker
simple non-arguing agent simple belief revision spread attitude relevant propose and reject (6.13)
chatty non-arguing agent simple belief revision spread attitude relevant propose and inform (6.14)
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The data for each experiment will be visualized through box plots of the
two agent behaviours, which show, the median, lower and upper quartiles and
the smallest and largest included samples, plus any outliers. The box is drawn
from the lower to the higher quantile, showing the locations of the 25th and 75th
percentile of the data distribution. The medium, drawn inside the box as bold
line, represents the middle value in the distribution of all samples. The total
spread of included data samples is indicated using the whiskers. Any outliers
are plotted separately. The mean is also plotted in the graphs, using the _ sign,
showing the average value over all samples.

8.2 Results

Four hypotheses on the effects of argumentation in deliberating agents will now
be discussed, based on the experiments that were performed with the experi-
mental platform.

8.2.1 Arguing versus non-arguing agents
The most prominent experiment compared the simple rational and simple non-
arguing agents. As explained above, the non-arguing agents are effectively not
asking for and providing arguments in the deliberation dialogue. Instead, they
have to rely on proposing options and rejecting those. Attitude assignment is
still argumentation-based, just as with the simple arguing agent, and knowledge
revision only adopts all proposed options in both agents.

As explained in the beginning of this thesis, argumentation-based dialogue
models often claim to promote efficiency benefits. This leads to the following
hypothesis on argumentation efficiency in deliberation dialogues.

Hypothesis 1 A deliberation process is more efficient if agents are allowed to
argue, requiring less communication to come to a decision.

Figure 8.1 shows the communication efficiency, defined as the move count,
and the topic efficiency, defined as the degree of information concealment, for
the two simple deliberating agents. Clearly, the arguing agents typically played
more moves, indicated by the movecount, than the agents that do not argue
in the dialogues. This result is explained by the fact that arguing agents can,
and indeed do, ask for and provide reasons for questing proposals. Disputes
are solved through the playing of arguments, while the non-arguing agents only
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Figure 8.1: movecount and conceal for simple rational arguing and simple non-
arguing agents

propose options and reject them. Similarly, the arguing agents also revealed
much more of their knowledge, shown by the lower values for relevance. All
that the non-arguing agents reveal are their options.

In Chapter 6 it was argued that non-arguing agents might still want to
share knowledge with the other agents, but by using inform statements rather
than arguments relevant to some proposal. This was modelled through the
propose and inform heuristic, where agents will inform others of the facts in their
knowledge. A separate experiment was performed that compares the simple
non-arguing agent to an agent that also plays inform moves.

Figure 8.2 shows that the communication effectiveness is obviously affected,
as the non-arguing agent will now also play inform moves. Degree of informa-
tion concealment is similarly affected, as agents will now not only play relevant
propose and why-propose moves, but also inform statements, which reveal per-
sonal beliefs to the other agents. Still, the number of moves as well as the
concealment of information is still better with the chatty non-arguing agent
than with arguing agents, as pictured in Figure 8.3. Concluding the discus-
sion on efficiency, the simple arguing agents use over 200 moves in a dialogue
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Figure 8.2: movecount and conceal for simple non-arguing and chatty non-
arguing agents
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Figure 8.3: movecount and relevance for arguing and chatty non-arguing agents
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Figure 8.4: utility and Pareto optimality for simple rational arguing and simple
non-arguing agents

on average, the chatty non-arging agents, who play informs, use over 70, while
the non-arging agents that only propose and reject need just over 30 moves on
average. Hypothesis 1 should therefore be rejected.

The other important aspect to compare arguing and non-arguing agents on
is effectiveness. Again, models for argumentation-based dialogues as proposed
in the literature are justified through the potential effectiveness benefits. The
experiment between arguing and non-arguing agents can show how effectiveness
is influenced by the introduction of argumentation.

Hypothesis 2 A deliberation process is more effective if agents are allowed to
argue, leading to an outcome with higher utility for the multi-agent system.

Figure 8.4 shows the topic effectiveness, measured as combined utility for
the agents utility, for arguing versus non-arguing agents. The arguing agents,
with an average utility of around 20, outperformed the non-arguing agents, with
an average utility around 1.

The explanation for this is found in the lack of agreement in non-arguing
agents. In a typical dialogue between non-arguing agents there is much disagree-
ment, as agents have different utilities for options and it is therefore common
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that no single option is interesting for all agents. In such a situation the pro-
posal for the option will be directly attacked. Since attacked proposals (without
arguments to back up) will always be out, they are never selected as dialogue
outcome. In short, it is very common that a dialogue between merely non-
arguing agents will have no outcome, as there is often at least one agent that
attacks the option. A dialogue without an outcome has a combined utility
of 0, explaining the many zero-utility dialogues and the accordingly low topic
effectiveness average.

It is good to note that the arguing agents also typically have options that are
immediately refuted by another agent. However, in contrast to the non-arguing
agents, the simple rational agents can explain why it is still a viable proposal, by
showing how it supports the mutual goal. Indeed in a typical dialogue between
arguing agents proposals are both attacked and defended by various arguments.

A dialogue that has no outcome also has no Pareto optimal outcome. It
is therefore expected that the simple non-arguing agents, who commonly can
not settle on a dialogue outcome, also have a very low percentage of cases
with Pareto optimal outcomes. The simple rational agents, on the other hand,
typically select an outcome that is Pareto optimal in about 80% of the cases.

Finally, effectiveness was measured in terms of how relevant the agents were
in their moves. As seen, the simple arguing, but also the simple non-arguing
agents, play only relevant moves. Hence, this direct comparison does not show
a clear benefit. However, the case is different for the chatty non-arguing agents,
who expose beliefs in the dialogue through inform statements. inform moves can
not directly be related to the ongoing discussion of some claim and the relevance
metric therefore considers such moves to degrade the communication effective-
ness of a dialogue. This is shown in Figure 8.3, where the arguing agents on
average conceal about 85% of their information, while the chatty non-arguing
agents conceal only about 45% of their beliefs and options. Concluding, Hy-
pothesis 2 can be accepted, as arguing agents perform better on the effectiveness
metrics than the non-arguing agents.

8.2.2 Baseline performance

As seen, the simple rational agents can argue which proposal should be selected,
which results in a combined utility of around 20. This raises the question
whether this is high or low. Or rather, how does this level compare to the
situation where a random proposal is picked?
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Figure 8.5: utility and Pareto optimality for simple rational agents versus base-
line performance

To test this, the simple rational agent was compared to a baseline perfor-
mance. The baseline is set by selecting a random proposed option, rather than
one that is in, but still not considering options that were not proposed in the
dialogue. This allows to compare the effect that making argue moves has on
the average combined utility of the agents.

Figure 8.5 shows the topic effectiveness, measured by the combined utility
utility, and the percentage of Pareto optimal outcomes for the simple rational
agents and the baseline. As it happens, there is no statistical difference between
agents that argue about the propose options and agents that do not argue at all
in the dialogue. Both the average combined utility and the Pareto optimality
metrics do not show that arguing in a deliberation dialogue results in a better
performance.

This somewhat discouraging result can be explained by the fact that the
combined utilities that agents have for the various options are usually not very
dispersed. Although individual agents typically have a strong preference, the
utility for all agents combined for some option is usually very comparable to
that of other options. As a result, even picking a proposed option at random
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Figure 8.6: relevance and utility for simple rational and naive revision agents

will typically yield a good utility. It is expected that a different, more skewed
utility distribution will cause the arguing agents to start performing better than
the baseline.

8.2.3 Knowledge revision
So far the arguing agent behaviour that was used did not use any sort of knowl-
edge revision beyond adding proposed options to its knowledge. However, it was
suggested that the adoption of exposed knowledge in the dialogue can directly
influence the topic efficiency and effectiveness. The underlying intuition is that
agents can use the earlier exposed knowledge to prevent having to expose their
still concealed beliefs.

Hypothesis 3 Adopting knowledge of others allows an agent to conceal infor-
mation while combined utility is not negatively influenced.

An experiment was performed that compares the simple rational agent with
one that adopts any premise that other agents use. The earlier presented naive
revision heuristic of Definition 6.6 is used by this behaviour to have the agents
adopt any premise that was used in an argument in the dialogue.
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Figure 8.7: relevance and utility for naive and considerate revision agents

Figure 8.6 shows the effect of adopting beliefs in a naive matter on the ef-
fectiveness of communication and topic layers. Contrary to the simple arguing
agent, the naive revision agent was not able to conceal more of its information.
Actually, it exposed more knowledge in the dialogue. Hypthesis 3 should there-
fore be rejected, even though, as hypothesized, the average combined utility
was not affected by the naive way of adopting beliefs.

The reason for the naive revision agent actually exposing move knowledge
is found in how the adopted knowledge is used. What happens is that the
naive agents adopt premises, which allows them to construct new arguments.
As agents will play any relevant argue move they know about, the agent will
now play the new arguments, based on the learned premises, which often expose
defeasible rules that were not exposed earlier in the dialogue. Consequently, the
adoption of premises by other agents results in a higher number of defeasible
rules that are exposed, by which the concealment metric goes down.

An alternative was proposed to the naive way of adopting beliefs. The
original idea was that agents would not accept beliefs, and would therefore not
reason with these beliefs, which the agent could construct counterarguments
for. A new agent, called the considerate revision agent, was used to compare to
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the naive approach.
Figure 8.7 shows the results for the comparison between the naive and con-

siderate way of adopting beliefs. As it happens, the degree of concealment nor
the combined utility were different. Being considerate, only adopting beliefs to
which there is no counterargument, does not influence how much information
agents expose or the utility of a dialogue. This is a result on how many beliefs
are actually adopted. As it turns out, almost all beliefs that are exposed will
be adopted by the considerate agent, as it will rarely have a counterargument.

8.2.4 Self-interestedness

The final experiment performed in the interest of this chapter was a comparison
between two alternative ways of assigning attitudes to options. The simple
relevant agent builds any option that it has a positive utility for, based on
the goals that it expects to achieve. An alternative was proposed that is more
focused, only assigning a build attitude to the option with the highest utility and
destroy to any other option. This is more self-interested than the spread attitude
assignment of the simple arguing agent, as it pursues solely its most promising
alternative. The intuition is that this approach will cause the discussion to
be more focused, with fewer proposals being discussed and therefore a lower
number of dialogue moves. As a consequence it is also expected that agents can
withhold more of their information.

Hypothesis 4 Dialogue efficiency, for topic as well as communication, will
increase if agents are more self-interested.

Figure 8.8 shows the effect of a more self-interested attitude assignment on
the dialogue efficiency, that is, the number of moves the agents used and the
information concealment. The agents that only assigned a build attitude to
the option with the most utility needed less than half the number of moves on
average to complete a dialogue. Moreover, significantly less beliefs are exposed
by the agents.

Looking at the experimental data, the focussed attitude agents will propose
much less options, as they only have a build attitude for the option with maxi-
mum utility. The dialogues therefore focus on less options, resulting in shorter
dialogues with less exposed beliefs and rules. Concluding, Hypothesis 4 can be
accepted, as efficiency is increased when agents are more self-interested.
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Figure 8.8: movecount and conceal for simple arguing and focussed attitude
agents

Karunatillake et al. (2009) have also compared agents that are more or less
self-interested in argumentation-style dialogues. One of their findings was that
the withholding of information, like the focussed attitude agents of this chapter,
resulted in a lower effectiveness as measured by the combined utility. To see if
this result can be reproduced, the topic effectiveness of the focussed attitude
agents should be lower than that of the simple arguing agents.

Hypothesis 5 Topic effectiveness, measured as combined utility, will decrease
if agents are more self-interested.

Figure 8.9 shows the topic effectiveness and the Pareto optimality. Contrary
to the findings of Karunatillake et al. (2009), restricting the sharing of options
did not significantly lower the combined utility. However, the outcome is less
likely to be Pareto optimal, which means that, as expected, the effectiveness is
negatively influenced by focussed, more restricted proposing of options. Hence,
as Pareto optimality is concerned, Hypothesis 5 can be accepted.
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Figure 8.9: utility and Pareto optimality for simple arguing and focussed attitude
agents

8.3 Discussion

At the start of this thesis a research question was posed to discover the benefits
for a multi-agent system to use argumentation in deliberation dialogues. The
experiments of this chapter answer this question by the comparison of arguing
and non-arguing agents. Each of the desirable properties for deliberation dia-
logues have been tested to validate if these benefits arose in the experimental
setup.

8.3.1 Argumentation benefits on desirable deliberation
properties

Employing arguments in a deliberation dialogue has shown to not increase com-
munication or topic efficiency, as illustrated by the rejection of Hypothesis 1.
More specifically, it has the reverse effect. Arguing agents need a lot of moves
to settle their debate, while the non-arguing agents can suffice with merely
proposing and rejecting options. Correspondingly, the topic efficiency when us-
ing argumentation is also lower, as more information is shared in the dialogue.
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Non-arguing agents that share personal beliefs through inform statements are
less efficient than their simple non-arguing counterparts, but still more efficient
than the arguing agents.

While the use of argumentation does not improve dialogue efficiency, com-
munication and topic effectiveness are positively influenced, as Hypothesis 2 was
accepted. The deliberation scenarios often cause strong disagreement about the
options and the non-arguing agents can do no more than proposing and reject-
ing those. The arguing agents, on the other hand, have the opportunity to
contest option rejection, by showing how their mutual goal will be achieved
by an option. For this reason the arguing agents are much more likely to de-
cide on an outcome and therefore achieve a higher shared utility. Moreover, if
non-arguing agents expose personal information, it is not directly tight to an
option, bringing down communication relevance. Hence, arguing allows agents
to be more effective in a deliberation dialogue.

The simple arguing agent as specified in Chapter 6 is really just that: a
simple agent capable of playing arguments in a deliberation setting. It is rep-
resentative of an arguing agent, but many variations of arguing agents can be
realized in the agent behaviour framework. Some alternatives have been con-
sidered in this chapter and it is shown how they influence the benefits of using
arguments in multi-agent deliberation. Admittedly, more sophisticated non-
arguing agents might realize a better effectiveness using alternative approaches
to settle disputes. However, the same can be said of the arguing agents in this
chapter. For example, if in two distinct proposal trees a dispute arises on some
claim p, the simple arguing agents will extensively discuss this claim in both
proposal trees. In fact, this situation can even occur (repeatedly) within one
proposal tree. Smarter arguing agents could recognize this and decide not to
continue the discussion any further. Of course, many other improvements can
be though of.

8.3.2 Existing experimental work with argumentation

Although scarce, there have been studies in the multi-agent research field that
try to experimentally proof the benefits of using argumentation in multi-agent
dialogue. Above, the study by Karunatillake et al. (2009) was already cited.
They study the performance of agents in a multi-agent society that negotiate
on responsibilities and the execution of tasks. Interestingly, their experiments
showed that the introduction of an argumentation phase in the dialogues de-
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creased communication efficiency but allowed for a higher topic effectiveness,
resulting in a higher shared utility. This is exactly the result acquired in this
chapter. However, the argumentation phase in the experiments of Karunatillake
et al. was implemented as a simple function stating whether the discussion on
the option was successful or not. In other words, the argumentation phase in
their dialogues did not involve the actual construction and playing of structured
arguments. In fact, their agents were abstract, having no knowledge base, rea-
soning mechanism or move generation step. In conclusion, it is motivating to
find very similar results while having a fully developed framework with agents
that can use structured argumentation.

Pasquier et al. (2010) have proposed an experimental framework for nego-
tiating agents that use reframing, a process of asking for and providing back-
ground information to bring about a better understanding of the reasons for
rejecting a proposal. Information is supplied in the form of goals and options
that are implicitly connected, without providing (defeasible) inference rules that
connect them. For this reason, it is not a structured argument and there is no
underlying model in which statements can rebut, undermine or undercut each
other. Regardless, agents that ask for and supply underlying goals are roughly
similar to the deliberating agents in this chapter. Pasquier et al. show that the
agents that use reframing statistically are more effective than the bargaining-
only agents, as measured by the cost of the outcome as inverted utility. Hence,
their negotiating agents, although without the explicit adoption of an argumen-
tation logic, show comparable results as the arguing agents of this chapter.

Finally, Pajares Ferrando and Onaindia (2012) have designed and imple-
mented a framework for the evaluation of argumentation-based multi-agent
planning. In a dialogue-like interaction the agents restructure a shared plan
until every agent agrees on it. The plan is revised by contesting a step in a
plan through the moving of an attacking argument. In a classical setting, the
plan would then be changed and in turn the other agents can rework it. On
the other hand, with an argumentation-based approach the supplied argument
can in turn be attacked with arguments as so to use the non-monotonic as-
pect of argumentation to mutually find agreement. An experimental validation
was performed on a complex yet typical multi-agent planning problem. The
results show that argumentation requires additional interactions and therefore
are less efficient. However, the resulting plans achieve a higher effectiveness,
as the agents can prevent failed plans and the resulting plans have a higher
team satisfaction, measured by the individual agents’ preferences. These re-
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sults are directly in line with the experiments in this chapter, albeit in the more
restrictive multi-agent context of a planning problem.

8.3.3 Trade-offs of using argumentation
Combining the just discussed previous work on experimental validation of the
uses of argumentation with the deliberation experiments in this chapter, there
seems to be a strong trade-off between efficiency and effectiveness whether ar-
gumentation is beneficial or not. In other words, it is strongly dependent on the
specific system in which agents are implemented, whether it is a good idea to
allow for argumentation between agents. When efficiency is most important in
a system, argumentation may be too costly. For example, when communicative
acts are expensive in terms of money or time or when the information is very
sensitive and should be shared as little as possible. When effectiveness is most
important in a system, argumentation can help improve the performance of the
multi-agent system as a whole.

The trade-off between effectiveness and efficiency does not mean that only
the one or the other can be designed for. Instead, the proposed framework in this
thesis allows for future creation of agents that can smartly determine when to
use argumentation and when not to argue. Both the arguing and arguing agents
of this thesis are still very simple in many respects. However, how agents can
reliably make the decision to use argumentation and if there are perhaps benefits
for individual agents to (not) argue needs to be studied further. Non-arguing
agent can perhaps draw upon work on negotiation, while the arguing agent may
likely benefit from a more sophisticated way of selecting a proposal as outcome
based on their explicitly expressed preferences. Fortunately, the method of
experimentation and the deliberation platform of this thesis provide the tools
to design such agents as well as experimentally validate their performance.
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Chapter 9

Argumentation testbed

As often with research, the answering of one question results in the asking of
many others. The formal framework developed in this thesis, and the experi-
mental methodology to go with it, supplies a solid basis for the answering of
many new questions on argumentation in multi-agent dialogues. This chapter
will show how the experimental platform of this thesis is suitable as general
testbed for studying argumentation in deliberation dialogues.

9.1 From platform to testbed

Already during the construction of the formal framework of this thesis, it be-
came clear that there is an enormous variety of deliberation protocols, scenarios
and arguing and non-arguing agents. With this in mind, it became clear that
the framework of this thesis, implemented as the experimental platform, could
serve as a starting point for further experimental work on argumentation in di-
alogues. After all, many strong assumptions and restrictions have been made in
the design of the platform and agent behaviours, each of which are opportunities
for additional experimentation.

Yuan et al. (2008) have proposed to construct a testbed for arguing agents
to spur the interest in argumentation for multi-agent systems. A testbed,
which can work as an Arguing Agents Competition, can increase interest in
argumentation-based dialogue frameworks, as well as arguing agent strategies.
Yuan et al. propose six requirements for an argumentation testbed. A testbed
should:

1. provide an interesting and fair scenario to play,
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2. enforce legal moves according to some protocol,

3. allow agents to join into a dialogue,

4. control turn taking,

5. allow for reviewing of played dialogues,

6. allow running of repeated experiments.

It will now be explained how these requirements are satisfied by the experi-
mentation platform as implemented for this thesis.

9.1.1 Asynchronous platform
During the implementation of the experimentation platform, special attention
has been given to the way experiments are run, dialogue communication is
organized and how agents are executed. Importantly, agents are considered to
be autonomous entities, which can decide by themselves which dialogue to join
and which have full control over their own behaviour. Hence, the platform and
each agent all need to run separately, or more specifically, within their own
computational thread. A dedicated dialogue control thread is used to handle
the joining of agents as well as the passing of messages, including moves that
agents make. It is also responsible for turn taking and determining the dialogue
outcome.

To support the repeated execution of experiment runs, allowing agents to
participate in many subsequent dialogues, a dedicated experimentation thread
is used that initializes and starts individual experiment runs. It gathers dia-
logue statistics to measure the performance of the multi-agent system in terms
of each of the four deliberation metrics of Chapter 7. In short, the experi-
ment, the dialogue control and each of the agents are separate entities that
run asynchronously and are aligned through message broadcasts. Figure 9.1
shows the sequence diagram of how experiments are executed in the testbed
implementation.

9.1.2 Experiment run output and analysis
To run repeated argumentation experiments, the Java software implementation
of the experimentation platform offers a command line interface called baidd-
exp, where baidd stands for BDI Agents Interacting in Deliberation Dialogues.
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Figure 9.1: Experiment execution in the asynchronous platform and agents

161



9. Argumentation testbed

Table 9.1: Options to run experiments with the baidd-exp program

Option Description
-?, -h, --help Print usage message
-f, --file <File> File to write output to
-l, --level <Level> Set message console print level
-o, --output <Writer> Set experiment results output (Console, Csv)
-p, --property <Property> Experiment with a BDI strategy property
-r, --runs <Integer> Number of dialogues to run
-s, --strategy <LocalAgent> Set agent class (BDIAgent, NonArguingAgent)
-v, --version Version info
-y, --history <File> Directory to store generated scenarios
-D, <DeliberationRule> Use a specific deliberation rule
-O, <OutcomeSelectionRule> Use a specific outcome selection rule
-T, <TerminationRule> Use a specific termination rule

Configuring the dialogue protocol and the agents, as well as the experimental
parameters, is performed by simply providing the right set of options to the
program. The available options to the baidd-exp program are listed in Table 9.1.

For example, to start 100 experiment runs with agents of the BDIAgent class,
while testing the AdoptBeliefs property of that agent and writing the results to
a local file, it suffices to execute:

./baidd-exp -s BDIAgent -r 100 -p AdoptBeliefs -o Csv -f ./results.csv
This will result in a local result.csv data file that contains, for all experiment

runs, the experiment run configuration and the performance in terms of the four
deliberation metrics. The data is formatted for easy loading into data analysis
software such as SPSS or R. Optionally, the full history of generated scenarios
can be written to local XML files. These XML files contain the specification for
each experiment run, including the agent knowledge and dialogue protocol con-
figuration, and can be used to replay the specific experiment run. Specifically,
they can be replayed with the exp-viewer tool.

Example 9.1 The baidd-exp application generates one XML file for every par-
ticipating agent, containing the knowledge that was assigned and optionally any
experimentation properties that the agent is requested to use. Listing 9.1 shows
an example XML file for an agent that is assigned 3 options, 4 goals and 15
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Listing 9.1: Example agent knowledge XML file

<?xml version ="1.0" encoding ="UTF -8"?>
<baidd - agent >

<beliefbase ><![ CDATA [
[r65] g_d <- p_3.
[r11] g_d <- p_1.
[r29] g_d <- p_18.
[r24] ~r5 <- p_6.
[r91] ~p_17 <- p_18.
[r17] p_14.
[r32] p_16 <- do(o_2).
[r28] p_18 <- do(o_2).
[r92] p_7.
[r39] p_7 <- do(o_4).
[r62] p_8 <- do(o_5).
[r41] p_1 <- do(o_4).
[r95] g_4 <- p_4.
[r67] g_4 <- p_9.
[r12] p_6 <- p_15.]] >

</ beliefbase >
<options >

<option >do(o_4)</ option >
<option >do(o_5)</ option >
<option >do(o_2)</ option >

</ options >
<goals >

<goal >g_2. 1</goal >
<goal >g_d. 2</goal >
<goal >g_d. 3</goal >
<goal >g_4. 4</goal >

</ goals >
<properties >

<property name=" AdoptBeliefs " type=" boolean ">true </ property >
</ properties >

</baidd - agent >

beliefs. The multi-agent system configuration is written to another XML file,
shown in Listing 9.2, and specifies the mutual goal for the agents (g_d), the
dialogue protocol rules and the agents to load, including the agent behaviour
Java class file to use (BDIAgent).

The baidd-viewer program provides a GUI to load and (re)play stored delib-
eration scenarios from XML files. The dialogue settings, such as protocol rules,
loaded agents, played moves and proposal trees are visualized. Dialogues can
be played outright or step by step, pausing the dialogue after every dialogue
turn. Figure 9.2 shows a screen shot of the application with an ongoing dialogue
between two agents. After joining the dialogue, the agent proposed two options
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Figure 9.2: Screen shot of the baidd-viewer program
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Listing 9.2: Example multi-agent system XML file

<?xml version ="1.0" encoding ="UTF -8"?>
<baidd -mas >

<topic goal="g_d.">do(T)</ topic >
<protocol >

<deliberation - rules >
<rule >NoRepeatInBranch </rule >

</ deliberation - rules >
<termination - rules >

<rule >NoParticipants </rule >
<rule >InactiveRound </rule >

</ termination - rules >
</ protocol >
<agents >

<agent file=" Agent0 . agent " name=" Agent0 " type=" BDIAgent " />
<agent file=" Agent1 . agent " name=" Agent1 " type=" BDIAgent " />

</ agents >
</baidd -mas >

already and submitted one argument supporting a proposal. The proposal trees
are pictured to easily see how the status of moves in the dialogue is affected.
Moves that are in are drawn with a green, solid outline, while moves that are
out are drawn with a red, dashed outline.

9.1.3 Scalable scenarios

Each argumentation experiment requires a different type of scenario. Perhaps
the designer of the experiment is interested in dialogues between many agents or
with a high amount of incomplete knowledge. On top of this, the designer might
define scenario interestingness in different ways, as explained and formalized in
Chapter 5. The testbed supports supports these designer requirements through
the input parameter configuration of the scenario generation method, such as
the number of beliefs, goals and options, the length of argument chains or the
number of roles in a dialogue.

To ensure a certain type of scenario for some testbed experiment, it is possi-
ble to fix input parameters. The ideal setting for parameters that are not fixed
can be determined by applying the scenario generation method experiment of
Chapter 5. Although the software does not fully automate this process of find-
ing the ideal setting yet, rather requiring the manual running of a Java program
and R script, it could easily be integrated and included as baidd-exp command
line parameter. This way, the type of scenario can be controlled by the designer
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Listing 9.3: DeliberationRule interface and an example implementation

/**
* Evaluates whether a submitted move in the dialogue is allowed
* @param dialogue The current state of the dialogue
* @param move The new move that was submitted
* @return The reason why this move was fallacious ; or null if it wasn ’t
*/

public abstract ProtocolException evaluateMove ( Dialogue dialogue , Move <?
extends Locution > newMove );

@Override
public ProtocolException evaluateMove ( Dialogue dialogue , Move <? extends

Locution > newMove ) {
if ( newMove != null && newMove . getTarget () != null &&

newMove . getTarget (). getPlayer () == newMove . getPlayer ()) {
return new ProtocolException (newMove , "The new move attacks one ’s own:

An agent may only attack moves of other players ");
}
return null ;

}

of the experiment, while maintaining fair scenarios with maximum potential for
deliberation.

9.1.4 Protocol and outcome rules
As shown above, the baidd-exp program allows for the configuration of dialogue
protocol and outcome rules. The testbed software’s dialogue control thread
checks every move submitted by the agents for validity. For example, agents
can be disallowed to reply to their own moves or play non-relevant moves, by
supplying the appropriate deliberation rules as options to the baidd-exp pro-
gram. Moreover, a single outcome rule can be supplied to the software, which
specifies the dialogue outcome selection function to use.

The designer of a deliberation experiment can supply new protocol and
dialogue outcome rules. These are implemented as single Java functions. There
are two types of protocol rules: rules that can prohibit moves and rules that
cause the dialogue to terminate. A DeliberationRule should check move legality
and return a ProtocolException if a new move violates the specific protocol rule
constraint. The testbed takes care of broadcasting this error and will discard the
erroneous move. The protocol rule interface and an example implementation
are given in Listing 9.3.

A TerminationRule is a protocol rule that checks if the dialogue should be
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Listing 9.4: TerminationRule interface and an example implementation

/**
* Evaluates the dialogue on whether it should terminate
* @param dialogue The current state of the dialogue
* @param participants The number of participants in the dialogue
* @param skips The number of subsequent skips (non - moving ) by the

participating agents
* @return The reason , in text , why the dialogue should terminate ; or null

if it should not
*/

public abstract TerminationMessage shouldTerminate ( Dialogue dialogue , int
participants , int skips );

@Override
public TerminationMessage shouldTerminate ( Dialogue dialogue , int

participants , int skips ) {
if ( skips >= participants + 1) {

return new TerminationMessage ("The dialogue was inactive for a full
round : All of the agents skipped their turn and the first skipped
twice .");

}
return null ;

}

terminated. In this thesis, the dialogue terminates when every agent skips their
turn and the first agent skips twice. A termination rule implementation should
return a TerminationMessage if a dialogue should be terminated, after which the
testbed will broadcast this message, stop accepting new moves and finalize the
dialogue by determining the outcome. Listing 9.4 shows the function signature
and the implementation used with the experiments of this thesis.

When a dialogue terminates, the dialogue control thread will determine the
dialogue outcome and notify the agents as well as any platform listeners, such
as the experimentation run or the dialogue viewer tool. Only a single outcome
rule is used for a dialogue, as it implementes the outcome selection function
of Definition 3.19. An OutcomeSelectionRule should return one of the propos-
als that the agents made during the dialogue. The method signature and an
example implementation are shown in Listing 9.5.

While the outcome selection implementation in the thesis simply selects
an arbitrary proposal that is in, an alternative implementation might consider
other factors, such as the explicit prefer and prefer-equal moves made by the
agents or the role of an agent. Similarly, the designer of a deliberation experi-
ment might want to introduce new protocol or termination rules. In fact, the
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Listing 9.5: OutcomeSelectionRule interface and an example implementation

/**
* Selects a proposal from those made in the dialogue as dialogue outcome
* @param dialogue The final , terminated dialogue
* @param allMoves All legal moves made by the agents , including prefer and

other moves not affecting a proposal tree
* @return The winning proposal , or null if there is no dialogue outcome
*/

public abstract Proposal determineOutcome ( Dialogue dialogue , List <Move <?
extends Locution >> allMoves );

@Override
public Proposal determineOutcome ( Dialogue dialogue , List <Move <? extends

Locution >> allMoves ) {
// Create a local set of made proposals and shuffle it
ArrayList <Proposal > proposals = new

ArrayList <Proposal >( dialogue . getProposals ());
Collections . shuffle ( proposals );
// Now select the first proposal that is in
for ( Proposal proposal : proposals ) {

if ( proposal .isIn ()) {
return proposal ;

}
}
return null ;

}

modular enabling of protocol and outcome selection rules opens up the possi-
bility for a wide variety of argumentation-enabled dialogue experiments. The
designer of such an experiment can reuse the experimental tools and BDI agents
of the testbed and focus on the effects of the particular protocol and outcome
selection rules that are of interest.

9.2 Implementing agent behaviour

To experiment with new types of agents, the designer needs to implement a
simple interface that allows the testbed software to start the agent, give it the
turn to make moves and inform it of events in the dialogue, such as other agents
making moves. The testbed will ensure that any agent is run on a separate
thread and is instantiated with the right knowledge, as defined by the scenario.
Is it up to the agent implementation to store knowledge, a model of the ongoing
dialogue and other state information that the agent requires. The full Agent
interface is shown in Listing 9.6.
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Listing 9.6: Agent interface

public interface Agent {

/**
* This should return how the agent wants to be called in the dialogue
*/

public String getName ();

/**
* An agent that needs to initialize itself can do so here. It is only

called once per session .
* @param participant The Participant object used to represent this agent

in a Dialogue structure
*/

public void initialize ( Participant participant );

/**
* The dialogue is starting and the agent should return either a

deny - dialogue or join - dialogue move.
* @param openDialogue The open - dialogue location containing the

deliberation topic and topic goal
*/

public Move <? extends Locution > decideToJoin ( OpenDialogueLocution
openDialogue );

/**
* An agent has the chance here to make moves . It is a full single turn ,

so a list of all the desired moves has to be returned at once.
*/

public List <Move <? extends Locution >> makeMoves ();

/**
* When some agent makes new moves in the dialogue ( including the

sender ). An agent can use this to update its model of the dialogue .
* @param moves The new moves that were submitted to the dialogue
*/

public void onNewMovesReceived (List <Move <? extends Locution >> moves );

/**
* When some message was received from the platform (e.g. when the

dialogue terminates ).
* @param messages The dialogue messages , with textual information
*/

public void onDialogueMessagesReceived (List < DialogueMessage > messages );

/**
* When some exception occurs in the ongoing dialogue , an agent may be

notified of this. For example , when it returns invalid moves .
* @param e The exception that was thrown , with information on the cause
*/

public void onDialogueException ( DialogueException e);

}
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Example 9.2 A minimal agent that at least wants to present its knowledge
of options to other agents would merely have to join the dialogue and play
propose moves for each of the options it knows about. An extension would be
to at least maintain a model of the ongoing dialogue, by monitoring the moves
of other players and updating a model of proposal trees accordingly. Listing 9.7
shows the full implementation of a simple agent that maintains a model of the
ongoing dialogue and plays propose moves for each option it was assigned from
the scenario.

Note that the example agent is strongly autonomous. Although the software
controls the start of the agent, it is not tied to a running dialogue platform.
Instead, it can constantly process data, make external connections, start addi-
tional threads, and so on.

9.2.1 Behaviour model agent template

Although the testbed puts few constraints on the way that agents function, it is
useful to have an agent template with a more limited scope, to be used for local
experiments with arguing agents. It matches the flexible yet concise model
for agent behaviour presented in Chapter 6, by maintaining the state of the
dialogue and dividing the move-making process into the four distinct decision
steps of deliberation. In other words, the behaviour model agent simplifies the
implementation of a behaviour model-compatible agent for the designer of an
experiment, as only the four behaviour decision steps have to be implemented.
Moreover, it offers several helper methods that a typical BehaviourModelAgent
would want to use, such as querying its knowledge base to find proof for a claim.
Listing 9.8 shows the available class members storing the agent state and the
function signatures of the abstract functions in the BehaviourModelAgent class
that should be implemented by the agent designer.

As the behaviour model maps directly to the four Java functions of the
DeliberatingAgent class, the heuristics introduced in Chapter 6 are direct imple-
mentations. For example, the considerate revision heuristic of Definition 6.6 is
implemented in Listing 9.9 by adding any proposed option, any informed belief
and any premise used in an argue move to the knowledge of the agent.

170



9.2. Implementing agent behaviour

Listing 9.7: An example SimpleAgent that plays proposals and maintains a
model of the ongoing dialogue

public class SimpleAgent implements Agent {

private Participant participant ;
private List <Rule > options ;
private Dialogue dialogue ;

public InactiveAgent ( AgentXmlData xmlDataFile ) {
// The XML data contains the knowledge we were assigned
this . options = xmlDataFile . getOptions ();

}

public String getName () {
return " Simple agent ";

}

public void initialize ( Participant participant ) {
this . participant = participant ;

}

public Move <? extends Locution > decideToJoin ( OpenDialogueLocution
openDialogue ) {

// Start our model of the ongoing dialogue
this . dialogue = new Dialogue ( openDialogue . getTopic () ,

openDialogue . getTopicGoal ());
// Always join the dialogue
Move < JoinDialogueLocution > join = Move. buildMove ( participant , null ,

new JoinDialogueLocution ( openDialogue . getTopic ()));
return join;

}

public List <Move <? extends Locution >> makeMoves () {
// Propose every option in our knowledge
List <Move <? extends Locution >> moves = new ArrayList <Move <? extends

Locution > >();
for (Rule option : this . options ) {

moves .add(Move. buildMove ( this . participant , null , new
ProposeLocution ( option . getClaim ())));

}
return moves ;

}

public void onNewMovesReceived (List <Move <? extends Locution >> moves ) {
// Update the model of the ongoing dialogue
if ( this . dialogue != null )

this . dialogue . update ( moves );
}

public void onDialogueException ( DialogueException e) {
}

public void onDialogueMessagesReceived (List < DialogueMessage > messages ) {
}

}
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Listing 9.8: BehaviourModelAgent’s internal state and four decision steps

protected Dialogue dialogue ;
protected KnowledgeBase beliefs ;
protected List <Rule > options ;
protected List <Goal > goals ;

protected abstract void reviseKnowledge (List <Move <? extends Locution >>
newMoves );

protected abstract List < ValuedOption > assignAttitudes (List <Constant >
options );

protected abstract List <Move <? extends Locution >>
identifyAttackPoints ( Dialogue dialogue );

protected abstract List <Move <? extends Locution >>
generateMoves (List < ValuedOption > valuedOptions );

9.2.2 Parameterized BDI agents

The BDIAgent built for use in the experiments of this thesis already implements
a large number of simple yet intuitive heuristics. The designer of a deliberation
experiment, especially when not focussing on different types of agents, might
simply configure the existing BDI agent to its liking, rather than making a
full new implementation. The agent behaviour is controlled by setting one of
the various configuration properties that the BDIAgent adheres to. Without
having to change any code of the testbed software, the agent can be configured
using the --property command line option to the baidd-exp program. For every
property that is supplied, the testbed software will run some scenario with the
specific Property set to true and again with the Property set to to false.

Listing 9.10 lists the properties that are available. Note that some are depen-
dant on each other. For example, AdoptOnlyBeliefsWithoutCounterargument will
only work if the agent is configured to AdoptBeliefs in the first place. Similarly,
only one of the attitude assignment methods is used at the time, such that with
BuildMaxDestroyMin set to true any of the other attitude assignment properties
are ignored. By default the agent is configured to play as the simple relevant
arguing agent from Definition 6.16. To disable argumentation altogether, the
PlayOnlyPropose property can be used, while a chatty agent can be configured
by using the PlayInformMoves property.
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Listing 9.9: Considerate revision implemented as reviseKnowledge function

@Override
protected void reviseKnowledge (List <Move <? extends Locution >> moves ) {

for (Move <? extends Locution > move : moves ) {
if (move. getLocution () instanceof ProposeLocution ) {

// We will adopt any new proposed option
Constant proposal =

(( ProposeLocution )move. getLocution ()). getConcreteProposal ();
// Do we know about it already ?
if (! isBeliefInOptions ( proposal )) {

// Is not known yet: add it as option belief
this . optionBeliefs .add(new Rule( proposal ));

}

} else if (move. getLocution () instanceof DeliberationLocution ) {

// Gather the newly exposed beliefs
Set <Constant > exposed = new HashSet <Constant >();
(( DeliberationLocution )move. getLocution ()). gatherPublicBeliefs ( exposed );
for ( Constant b : exposed ) {

// We add any newly exposed constant if it is not an option or
the mutual goal

if (b instanceof Constant &&
! dialogue . getTopicGoal (). getGoalContent (). equals (b) &&
! dialogue . getTopic (). isUnifiable (b) &&
! beliefs . ruleExists (new Rule(b))) {

// Check if no argument for the contrary can be constructed
List < RuleArgument > proofs = helper . findProof (new

ConstantList (b. negation ()), 0.0 , this .beliefs ,
this . optionBeliefs , null );

if ( proofs .size () == 0)
beliefs . addRule (new Rule(b));

}

}

}
}

}
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Listing 9.10: BDIAgent’s Property enumeration to configure behaviour

public enum Property {

// Adopting beliefs
AdoptBeliefs ,
AdoptOnlyBeliefsWithoutCounterargument ,

// Attitude assignment
BuildMaxDestroyMin ,
BuildOnlyMaxUtility ,
BuildAllAboveAverage ,
BuildAllPositiveUtility ,

// Move generation
PlayRejects ,
OnlyRejectIfCounterArgument ,
OnlyWhyProposeIfCounterArgument ,
OnlyWhyRejectIfArgument ,
OnlyWhyIfCounterArgument ,
SkipIfPossibe ,

// Disable arguing
PlayOnlyRejects ,
PlayOnlyPropose ,
PlayInformMoves

}

9.3 Possibilities and restrictions

The testbed as presented in this chapter opens up a wide array of possibilities for
experimentation with arguing agents. Since it is fully developed, with protocol,
scenario generation method and various arguing and non-arguing agents, an
experiment designer can reuse those parts that it does not want to focus on.
For example, if a study is performed on the effect of knowledge dispersion,
only the scenario generation method has to be customized, while the dialogue
framework, agents and experimentation tool are readily available.

Notable about the testbed presented here is that the platform, including
the agents, supports the full expressiveness of structured argumentation. This
includes concepts that were not yet used in this thesis, such as strict versus
defeasible rules, axioms versus ordinary premises and different acceptability se-
mantics. Because of this, the testbed can not only be of interest for research into
argumentation-based dialogue frameworks and strategies for such dialogues, but
also for experimental research with argumentation logics. However, it must be
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noted that the Java ASPIC implementation currently used has some omissions
with respect to the ASPIC framework specification. This issue can be solved
by using a more recent implementation, as will be discussed below.

Besides the ideas already presented in this and the previous chapter, possi-
bilities for experimental research with argumentation in multi-agent dialogues
include:

• Different agent types competing within a dialogue

• Allow agents to, or even force to, explicitly accept proposals

• Benefits of argumentation in more/less liberal protocols

• Unequal roles and knowledge distributions between agents

• Outcome selection through preference aggregation or a voting phase

Of course, countless other experiments are possible. In any case, each of
these studies can be performed with little additional modelling and program-
ming. However, there are also some restrictions that require a more structured
reworking of or additions to the platform. One important restriction of the
current testbed software is that all agents run on a single machine. No architec-
ture is designed or implemented for experiments with distributed agents. Wells
et al. (2008) have proposed the idea to set up an Arguing Agents Competi-
tion, much similar to the deliberating agents of this thesis, but set up with a
distributed software architecture to allow for competition-like experimentation.
Researchers in different physical locations could implement arguing agents and
have them compete against each other using the distributed testbed system.

Wells et al. provide a description of how an argumentation testbed can
support distributed experiments with competing arguing agents. Some issues
are already addressed in our experimentation platform. For instance, evalua-
tion of arguments is handled through the assignment of a status to moves and
truthfulness of agents is not a requirement for the used dialogue framework.
However, some technical considerations are still valid. A client-server architec-
ture is required for agents to connect to a testbed service, which generates a
scenario to play, distributes knowledge to agents and gathers dialogue result
data for analysis. Luckily, the existing testbed software already has dialogue
control and agent execution decoupled, with message exchange as way of com-
municating. A distributed version of the testbed software only needs to replace
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the local instantiation of agents with a service that allows remote agents to
connect. Message exchange, such as requesting and supplying dialogue moves,
can, for example, be implemented using an XML-RPC protocol, with arguments
encoded in the XML-compatible AIF+ language (Reed et al., 2008). Detailed
modelling and implementing this distributed testbed architecture remains as
future work.

Some restrictions are in place with respect to the dialogue framework. First,
agents are assumed to know the rules of the dialogue game and be capable
of communicating in the framework language, including the understanding of
the used ASPIC− argumentation framework. Note, however, that they are
not enforced to be honest or cooperative and are not required to agree of the
evaluation of arguments. This is taken care of by the protocol and the move
status evaluation.

Second, although an interesting topic on its own, an experiment designer
probably wants to adopt the rules of the minimal deliberation protocol of Defi-
nition 3.14, or at least prohibit duplicate proposals and repeated moves. With-
out these two critical rules, agents can repeatedly make the same proposals and
repeat arguments continuously. On the other hand, dropping the turntaking
rule, effectively allowing agents to move at any time, is perhaps interesting to
experiment with.

Third, the arguing agents presented in Chapter 6 use an attack point identi-
fication function that ensures playing of relevant moves. However, this requires
all agents in the dialogue to only play relevant moves. In the case of our exper-
iment this is enforced by a protocol rule. If an experiment designer loosens this
assumption, dropping the relevance protocol rule, then the presented arguing
agents are no longer assured to only play relevant moves.

9.4 Case study

As part of the Master thesis research project, de Leng (2012) has employed
the testbed software to study two new types of agents: trust-based agents and
secretive agents. The idea behind trust-based agents is that an agent might
accept an argument played by another agent, adopting the knowledge contained
in the argument, only if it has a trust relation with the other agent. If some
agent is not trusted, its arguments can be ignored or even actively attacked.
Trust is encoded as a single numeric value for each opponent, indicating the
trust level, and a threshold value that defines whether some agent’s utterance
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should be trusted or not.
Secretive agents were designed by de Leng as agents that prefer not to expose

knowledge. The idea is that agents sometimes expect to gain a higher utility
if they refrain from playing arguments, because the exposed knowledge can be
used against them. Secrecy is handled at two levels: active privacy-sensitivity,
causing the agent to actively attack arguments with why moves, and passive
privacy-sensitivity, causing agents to skip their turn if that seems beneficial.
Moreover, secretive agents will try to play arguments that use premises exposed
already in the dialogue, rather than arguments based on private beliefs that were
not yet exposed.

Implementation of the two new types of agents was performed by extending
the BDIAgent. Holding back on playing, instead skip the turn, and question-
ing other agents’ arguments with why moves, was already supported through
the OnlyWhyProposeIfCounterArgument and SkipIfPossibe properties. To prefer
playing arguments with already exposed knowledge, the reviseKnowledge Java
function was used to maintain a local list of all exposed beliefs and the gener-
ateMoves function was adjusted to sort arguments on the percentage of already
exposed premises, where the standard BDIAgent simply picks the first available
argument. Trust-based agents also extend the existing BDIAgent and add a sin-
gle check before the normal generateMoves behaviour whether the move, which
is some relevant attack point, should be attacked or, instead, if the player of
the move is trusted and the move should not be attacked.

De Leng argues that benefits of a trust-based or secretive approach might
be more apparent if not every agent in a dialogue uses the same strategy. To
experiment with this, the agent instantiation in the experimentation software
was reworked to instantiate two different types of agents. For example, if the
experimental scenario consists of six agents, the testbed software can instantiate
two BDIAgents and four TrustBasedAgents. An extra command line option for
baidd-exp was introduced to set the ratio of agent types.

An experiment was performed with both new agent types. This showed
that trust-based agents require fewer moves on average, improving communi-
cation efficiency, while the combined utility for the multi-agent system, the
topic effectiveness, was not notably influenced. However, if only one BDIAgent
played against multiple TrustBasedAgents, the trust-based agents, which are
quite naive, would perform significantly worse than the lone BDIAgent, which
realized a much higher individual utility. The experiment with secretive agents
showed little effect of active or passive privacy-sensitivity on the communica-
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tion efficiency or topic effectiveness. An exception is that the liberal use of why
moves reduced the required number of dialogue moves. This is a counterintu-
itive result, as why moves typically open up new reasons for discussion and it
is therefore expected that playing why moves would increase average dialogue
length. Unfortunately, de Leng does not provide a reason for this discrepancy.

With respect to this thesis, de Leng’s experimental work on trust-based
and secretive agents showed that the experimental platform is very capable as
testbed for new experimental work with argumentation. Through the isolation
of decision steps and the availability of proven and standardized components,
including a fully specified arguing agent, even complex ideas with arguing agents
can be implemented and tested in a short time span.

This chapter has shown how the software and experimental method devel-
oped for this thesis can be used as testbed system for future argumentation
research. The main benefit is that the designer of some argumentation-related
experiment does not have to model and implement a full experimental plat-
form stack, including arguing agents and a configurable experimentation tool.
As shown, experimentation with protocols is supported through easy configu-
ration and extension of deliberation, termination and outcome selection rules.
Research focussing on strategies for argumentation-based dialogues can either
take full control over the agent process, use the behaviour model-based agent
template or even just configure the existing parametrized BDI agent, depending
on the scope of the intended agent design. In any case, the scenario generation-
powered platform supports execution of many repeated experiment runs and
extracting performance-analytical data based on the four distinct deliberation
metrics. A case study has shown how experimental work with argumentation
is encouraged by the presented testbed system.
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Chapter 10

Discussion

The research project for this thesis was set up to investigate claims that employ-
ing argumentation in dialogues would benefit a multi-agent system in terms of
efficiency and effectiveness. Deliberation dialogues were chosen as prime topic,
as it is arguably the most versatile and interesting of the argumentation-based
dialogue types. An experimental approach was taken to find evidence concern-
ing the claimed argumentation benefits. It has the potential to show in which
practical cases benefits do or do not arise and allows for a performance-wise
comparison of arguing and non-arguing agents.

10.1 Conclusions

As broken down in the introductory chapter, testing the performance of agents
in deliberation dialogues first of all requires the establishing of desirable proper-
ties of deliberation. Performance of the multi-agent system is measured through
the introduction of metrics for deliberation dialogues. The resulting perfor-
mance numbers allow for a quantitative comparison of dialogues and, as an
extension, of the agents participating in those dialogues. This raised the ques-
tion:

Research sub-question 1 Which properties of deliberation dialogues are de-
sirable and how can we measure these properties?

Chapter 7 explored the desirable properties of deliberation dialogues. Al-
though the general terms efficiency and effectiveness are commonly used in the
literature, these concepts still needed to be made concrete. In fact, based on the
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literature, a distinction was made into communication and topic layer metrics.
This led to four metrics, each providing a numeric performance figure on the
dialogue itself and the agents that participated in the dialogue. Additionally, it
was shown how the notion of Pareto optimality can be used to value a dialogue
outcome quantitatively, as alternative to the summed utility values of agents.

The designer of a deliberation experiment can select the appropriate metrics
depending on the use case. For example, if information is highly sensitive, the
designer can focus on the topic efficiency, measuring the degree of information
concealment. Combined, the four introduced metrics cover the spectrum of
desirable properties for deliberation style dialogues. They can therefore be used
as general performance measure to compare (arguing and non-arguing) agents.

Although dialogue frameworks existed for various argumentation-based dia-
logue types and concrete strategies for such dialogues have been proposed in the
literature, no suitable unified framework yet existed for deliberation dialogues
and arguing agents. This justified the following research sub-question:

Research sub-question 2 What is a suitable framework for specifying delib-
eration dialogues and agent behaviours and how can the performance of delib-
erating agents be compared?

A framework for deliberation style dialogues has been proposed in Chapter 3.
It allows agents to take turn to play moves such as proposing new options, pro-
viding arguments and stating preferences. Through the explicit reply structure,
every move can be assigned a status that can be used to enforce move rele-
vance or select a proposal as dialogue outcome. This dialogue framework is
very suitable for experimental work for four reasons. First, it supports argu-
mentation with structured arguments to allow for rich disputes, in line with
modern argumentation logics. This includes epistemic as well as practical ar-
guments, combining beliefs with goals and options. Second, dialogues can be
evaluated by simply looking at the explicit reply structure of moves. For this
reason, agents do not have to agree on the evaluation on submitted arguments
in the dialogue. Third, the topic language is extensible with other types of at-
tacking or surrendering moves, without having to specify semantics on how the
new move type influences other moves. For example, allowing an explicit accept
move as surrendering reply on propose moves would implement agents accepting
a proposal explicitly in a natural fashion. Fourth, the dialogue protocol can be
made more or less liberal to make it suitable for a specific experiment.
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Agents were designed, in Chapter 6, as fully autonomous entities in the ex-
perimental framework. Based on the BDI architecture, agents maintain their
own world knowledge and model of the dialogue, they can internally reason
with arguments and are free to (not) make moves as they see fit, as long as
the dialogue protocol is adhered to. This design allows for a wide variety of
agent strategies. To aid in the design of agents, and to make heuristics for
individual deliberation decision steps directly comparable, a behaviour model
was specified. It makes concrete the four steps relevant to deliberation dialogue
decision making: knowledge revision, attitude assignment, attack point identi-
fication and move generation. Several arguing and non-arguing heuristics have
been proposed that implement decision steps and together form simple yet fully
functional deliberating agents.

The final part of a fully specified framework for deliberation experiments is
to provide agents with scenarios to play. Chapter 4 introduced a method to gen-
erate scenarios that reflect the characteristics of typical deliberation situations.
The core idea is that goals and options known to agents are not disconnected
entities, but are connected by defeasible rules to form a rule chain. The chains
allow means-end reasoning that combines epistemic with practical reasoning to
show how an option promises to satisfy a certain goal. Through chaining, the
resulting scenarios are not incoherent bodies of knowledge, but provide a struc-
ture that allows agents to propose and support options in a dialogue. Chapter 5
shows how the scenario generation method can best be configured for an exper-
iment, to maximize the potential for interesting deliberation dialogues.

To find evidence that using argumentation in deliberation dialogues brings
benefits, agents that use argumentation need to be compared to agents that
do not argue. Of course, agents use argumentation by playing argue moves in
a dialogue, but argumentation can be used internally by the agents as well,
as internal reasoning method. To study how internal reasoning and playing of
argue moves are related, the following question was asked:

Research sub-question 3 How can agents use arguments to reason about
options and generate appropriate moves?

Playing a deliberation dialogue is not an easy task. Both the revision of
knowledge and the strategic reasoning towards move generation require a com-
bination of knowledge, personal goals and utilities, the current dialogue status
and option potential. As already shown in Chapter 5, agents can use argumen-
tation internally to support the reasoning process over knowledge. Through
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construction of practical arguments, option potential can be established for
both the mutual goal, required to propose an option, as well as personal goals.

Chapter 6 has provided several heuristics that take advantage of option po-
tential, using the power of the underlying argumentation logic to derive defensi-
ble arguments for and against proposals. Knowledge can be revised selectively
by only adopting beliefs for which there is no proof to the contrary. Attitudes
can be assigned to options based on their potential to realize personal goals. Fi-
nally, move generation, choosing one move to make from the many legal moves,
was supported by an explicit attack point identification step. The notion of
relevance from the dialogue framework was reused to realize agents that only
play arguments relevant to the topic at hand, that is, the status of some existing
dialogue proposal.

With the formal framework, metrics and fully specified agents at hand, it is
finally possible to experimentally explore if (and when) argumentation brings
about benefits for a multi-agent system. Through experiments with arguing
and non-arguing agents, the main research question of this thesis can now be
answered:

Research question What are the benefits of using argumentation in multi-
agent deliberation dialogues?

The experiments of Chapter 8 provide several answers to this question. Most
importantly, an experiment between a simple rational arguing agent and simple
and chatty non-arguing agents showed that argumentation decreases efficiency
but increases effectiveness. This is true for the communication layer as well
as the topic layer. In fact, it was concluded that there is a trade-off between
efficiency and effectiveness. The designer of an agent will have to consider
the specifics of the deliberation system where an agent will be deployed, in
order to determine when to have agents argue and when argumentation is best
not used. However, more sophisticated agents than those used in this thesis
will likely have a less strict reverse correlation between expected number of
moves and combined utility. For example, not engaging in a dispute on claims
that are already discussed elsewhere in the dialogue may strongly improve the
communication efficiency performance of the arguing agent.

Some discouraging results were found as well. Prominently, the arguing
agent was not able to outperform the baseline performance of randomly se-
lecting a proposed option and doing away with argumentation altogether. As
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hypothesized in Chapter 8, this is likely the result of a strong dispersion of util-
ities for options between the agents in the dialogue. Further experimentation
is necessary to validate this intuition. Another influencing factor is the sim-
plistic outcome selection function of picking a random proposal that is in. A
selection function that adheres to explicit prefer and prefer-equal moves or even
introduces a separate voting phase might already show how arguing agents can
outperform the baseline performance, as not just any proposal would be picked,
but rather one that is in and agents explicitly prefer best. In any case, the use
of argumentation should not only be found in the utility of the selected dialogue
outcome, but also in the providing of proof, by means of practical arguments,
on why the selected proposal is indeed a good outcome.

Other evidence of there being a trade-off between efficiency and effectiveness
was provided with the experiment on self-interested agents. It was shown that
employing a more self-interested attitude assignment increases dialogue topic
and communication efficiency, while it decreases the topic effectiveness, albeit
only measured in terms of Pareto optimality. While this further validates our
general conclusion on the benefits of argumentation, it also shows that there
is room for arguing agents that perform better on efficiency while not, or only
to a limited degree, having to give in on effectiveness performance. One of the
challenges for future experimental research with arguing agents is therefore to
devise agents that perform well on all four specified metrics, or at least on those
that are important for the specific system.

10.2 Contributions

With the research performed for and described in this thesis, several concrete
advancements have been made to the existing work in argumentation-based
dialogue research. Although all have been discussed implicitly throughout the
previous chapters, it is useful to enumerate them here.

The first contribution of this thesis is a fully defined framework for de-
liberation dialogues and deliberating agents. The framework for deliberation
dialogues developed for this thesis was first proposed in Kok et al. (2010). De-
liberation dialogues are particularly interesting with respect to experimental
evaluation as multiple agents need to compete and cooperate at the same time,
while combining epistemic and practical reasoning. The presented framework
is the first of sorts that allows the use of the full expressive power of mod-
ern structured argumentation logics in deliberation dialogues. Although several
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strategies for argumentation-based dialogues have been proposed, no generalized
framework for agent behaviour in argumentation-based dialogues, as proposed
in thesis, was readily available. The proposed framework makes concrete the in-
dividual decision steps that were left implicit in previous work, by which easier
comparison of heuristics for these steps is now possible.

A second contribution is a method for performing experiments with argumentation-
enabled agents in multi-agent dialogues that is extensible and general enough
to cater for many future research directions. Importantly, instead of having
to rely on an existing set of cases for agents to deliberate on, scenarios can
be generated that provide interesting situations for the evaluation of arguing
agents. Scenario generation was first proposed in Kok et al. (2012c). More-
over, contrary to existing experimental work with argumentation dialogues, the
scenarios provide agents with beliefs, goals and options that allow them to use
structured argumentation, to reason internally and to argue in the dialogue.
The metrics for deliberation dialogues complete the experimental platform and,
accompanying the platform, a method to experimentally compare agents that
use argumentation with agents that do not argue.

Preliminary results have been obtained, as third research contribution, that
show a trade-off between efficiency and effectiveness whether to employ argu-
mentation or not. This result was first presented in Kok et al. (2012b) and, in
more detail, in Kok et al. (2012a). The results are said to be preliminary as
there are hints that sophisticated agent behaviour can overcome to a certain ex-
tent the inverse correlation between efficiency and effectiveness. Several simple
alternative heuristics have been proposed that support this finding.

This thesis concluded with an explanation on how the experimental plat-
form of this thesis can be used as testbed system for future research, which
is the fourth contribution. A full software stack is now available that covers
dialogue framework, agents and performance-analytical capabilities, and that
can be reused (in part or completely) by new studies with argumentation in
multi-agent dialogues. This allows for focus on the specific topic at hand, with-
out having to implement a full platform, but still having access to the power
of a full experimentation platform. Although not yet built as distributed plat-
form, designers of future experiments with deliberating agents can reuse the
components that are of less interest to their experiments and focus on, for in-
stance, a specific knowledge revision method or study the influence of unequally
distributed knowledge between agents.
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10.3 Future work

The work of this thesis is only one further step towards a true understanding of
the role and benefits of argumentation in agent communication. In fact, several
new lines of research can be started, stemming from the results presented in this
thesis. Several recent directions in the field of computational argumentation can
prove useful. To start with, the formal dialogue framework can be generalized
to enable other types of argumentation-based dialogue types, such as Black
and Hunter (2007)’s inquiry system, to be embedded in a deliberation dialogue.
Alternatively, the topic language can be enriched with novel argumentation logic
enhancements. Value-based practical reasoning (van der Weide et al., 2009)
seems especially useful as it naturally combines internal motivations in agents
to option preferences. The deliberation dialogue-compatible decomposition of
options into plans, proposed by Toniolo et al. (2012), is another attractive
extension, as it can help agents understand the relations between options and
therefore potentially improve deliberation performance.

Generating interesting and realistic scenarios is at the heart of useful and
successful experimentation with arguing agents. The method presented in this
thesis could be augmented with techniques that translate natural language ar-
guments into a formal model argumentative model. Wyner et al. (2012) are
using argumentation-based models to extract logical arguments from natural
language. The extracted arguments based on domain-specific argumentation
schemes, can then be evaluated using readily available argumentation logics.
A challenging yet highly useful addition would be to apply this approach to
generate even richer and more realistic scenarios.

Regarding the agent behaviour model, it would be good to validate the ex-
pressiveness of the proposed model by implementing state-of-the-art argumenta-
tion dialogue heuristics, such as Snaith and Reed (2012a)’s knowledge revision.
More generally, the testbed system challenges researchers to devise strategies
that work well on various, or even all, of the deliberation metrics at once. For
instance, advanced strategies could recognise which claims have already been
discussed elsewhere in the dialogue. If agents have multiple encounters, it is in-
teresting to investigate how opponent models can improve argumentation-based
reasoning in deliberating agents.

To continue experimental research with the presented testbed platform, it
could be useful to update the technical implementation in two ways. First, the
platform should adopt a distributed architecture. This would allow agents from
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different researchers to compete and thereby make state-of-the-art agent com-
parisons easier. The improved architecture should allow different agent types
to join in a single dialogue. Second, the currently used implementation of the
ASPIC+ argumentation framework should be replaced by the recent implemen-
tation by Snaith and Reed (2012b). This would not only solve the implementa-
tion inconsistency issues described in Chapter 2, but also offer the full feature
set of the most recent ASPIC+ framework definition to the agents. This further
enriches the experimentation platform, allowing for even more interesting and
sophisticated agents and, by extension, deliberation experiments.

A final very interesting research question is what the benefits of argumenta-
tion are for individual agents, not only for the multi-agent system as a whole.
Desirable properties of deliberation and accompanying metrics need to be intro-
duced that reflect individual agent performance, rather than that of the system.
If experiments with benefits for individual agents showed a similar trade-off
between efficiency and effectiveness, a big step forwards would be make into
understanding how argumentation benefits multi-agent communication.
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Samenvatting

Argumentatie is voor mensen zo vanzelfsprekend als het voeren van een dialoog.
Het is dan ook een uitstekend middel om keuzes te maken en te bespreken.
Immers kan de vinger snel op een pijnpunt worden gelegd en meningsverschillen
kunnen slagvaardig worden opgelost. Het is dan ook niet gek dat er in allerlei
vormen van wetenschap interesse is voor argumentatie.

Binnen de kunstmatige intelligentie belooft het gebruik van argumenten heel
wat voordelen te bieden. Agenten, de spelers in een intelligent systeem, zouden
met argumentatie beter kunnen redeneren en onderlinge dialogen verlopen effec-
tiever en efficiënter. Hierom zijn er argumentatielogica’s ontwikkeld en raamw-
erken en protocollen gemaakt voor diverse argumentatie-gebaseerde dialoog-
typen. Echter is er maar weinig onderzoek uitgevoerd waarbij de voordelen die
argumentatie zou bieden op praktische wijze worden onderzocht.

In dit proefschrift wordt een compleet raamwerk voorgesteld, waarmee op
experimentele wijze de praktische voordelen van argumentatie in dialogen kun-
nen worden onderzocht. Een model voor beraadslaging biedt meerdere agenten
de mogelijkheid om een dialoog aan te gaan over welke actie er moet worden
ondernomen, om een gezamenlijk doel te realiseren. Door het spelen van argu-
menten proberen de agenten elkaar te overtuigen van de beste actie.

Om te onderzoeken of argumentatie daadwerkelijk de dialoogeffectiviteit en
-efficiëntie positief beïnvloed, dienen argumenterende en niet-argumenterende
agenten te worden vergeleken. Hiervoor worden een model en een methode
voorgesteld om scenario’s te genereren en vervolgens te laten spelen door de
agenten. Diverse vormen van eenvoudige doch rationele strategieën worden
voorgesteld en gebruikt om vele dialogen te spelen. Effectiviteit en -efficiëntie
van iedere dialoog wordt vervolgens vanuit gezichtspunt van zowel het gesprek-
sonderwerp als de communicatie getoetst.



Samenvatting

Vanuit experimenten met argumenterende en niet-argumenterende agenten
blijkt dat efficiëntie op zowel de onderwerp- als de communicatielaag niet positief
maar juist negatief worden beïnvloed. Het aanvoeren en verdedigen van argu-
menten zorgt namelijk voor langere dialogen, waarbij meer informatie moet wor-
den geopenbaard dan wanneer slechts voorstellen worden geopperd en afgekeurd.
De effectiviteit blijkt echter positief te worden beïnvloed als agenten argumenten
gebruiken. Argumentatie helpt agenten, zo blijkt, om afgewezen voorstellen te
verdedigen, waardoor het probleem verholpen kan worden dat geen enkele actie
gekozen uiteindelijk gekozen wordt. Bovendien helpt argumentatie de agenten
om relevante toevoegingen aan de dialoog te blijven doen, terwijl bij het sim-
pelweg delen van informatie uitingen niet coherent zijn. Concluderend lijkt er
een omgekeerde balans (trade-off) te zijn tussen efficiëntie en effectiviteit. Of
argumentatie beter achterwege kan worden gelaten is afhankelijk van de eisen
van het specifieke systeem.

Dit proefschrift levert niet alleen verder bewijs dat argumentatie in agent-
dialoogsystemen voordelen kan hebben. Het experimentele raamwerk dat is
beschreven biedt tevens vele mogelijkheden tot experimenteel vervolgonderzoek
naar argumentatielogica’s, -dialogen en -strategieën. Het geïntroduceerde soft-
waresysteem leent zich uitstekend tot hergebruik, waarbij reeds een complete
implementatie beschikbaar is voor generatie van scenario’s, een dialoogmodel
dat gestructureerde argumentatie ondersteund en een toetsingsmethode voor
simpele maar ook zeer complexe beraadslagingsstrategieën.
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